Development of Methods for Steel Surface Deformation Nanostructuring

Results are provided for studying deformation methods of steel surface nanostructuring and hardening with martensitic, pearlitic and austenitic structures. A new method of ultrasonic impact-friction treatment is considered. Combined methods of nanostructuring treatment (friction treatment + annealing) are proposed for a metastable Cr – Ni steel. The possibility is demonstrated of activating steel saturation with nitrogen during plasma treatment due to preliminary nanostructuring friction treatment.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

References

  1. 1.

    K. Lu and J. Lu, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment,” Mater. Sci. Eng. A, 375, 38 – 45 (2004).

    Article  Google Scholar 

  2. 2.

    N. R. Tao, M. L. Sui, J. Lu, and K. Lu, “Surface nanocrystallization of iron induced by ultrasonic shot peening,” Nanostruct. Mater., 11(4), 443 – 440 (1999).

    Article  Google Scholar 

  3. 3.

    A. V. Panin (ed.) Ultrasonic Treatment of Structural Materials [in Russian], Izd. Dom. Tomsk. Gos. Univ., Tomsk (2016).

  4. 4.

    Z. B. Wang, N. R. Tao, S. Li, et al., “Effect of surface nanocrystallization on friction and wear properties in low carbon steel,” Mater. Sci. Eng. A, 352(1 – 2), 144 – 149 (2003).

  5. 5.

    O. Unal and R. Varol, “Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening,” Appl. Surf. Sci., 351, 289 – 295 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    S. Q. Deng, A. Godfrey, W. Liu, and C. L. Zhang, “Microstructural evolution of pure copper subjected to friction sliding deformation at room temperature,” Mater. Sci. Eng. A, 639, 448 – 455 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    V. R. Baraz and O. N. Fedorenko, “Features of friction treatment of steels of the spring class,” Metalloved. Term. Obrab. Met., No. 11, 6 – 19 (2015).

  8. 8.

    S. Y. Kondrat’ev, V. I. Gorynin, and V. O. Popov, “Optimization of the parameters of the surface-hardened layer in laser quenching of components,” Welding Int., 26(8), 629 – 632 (2012).

    Article  Google Scholar 

  9. 9.

    A. V. Makarov, L. G. Korshunov, and A. L. Osintseva, “RF Patent 2194773, Method for treating steel components,” Byull. Izobr. Polezn. Modeli, No. 35 (2002),

  10. 10.

    A. V. Makarov and L. G. Korshunov, “Increase in hardness and wear resistance of steel surfaces hardened by laser using friction treatment,” Trenie Iznos,24(3), 301 – 306 (2003).

    CAS  Google Scholar 

  11. 11.

    A. V. Makarov and L. G. Korshunov, “Strength and wear resistance of nanocrystalline structures of a friction surface of steel with a martensitic base,” Izv. Vysh. Uchebn. Zaved., Fizika, No. 8, 65 – 80 (2004).

  12. 12.

    A. V. Makarov, L. G. Korshunov, Yu. I. Malygina, and I. L. Solodova, “Increase in heat and wear resistance of hardening carbon steels with friction strengthening treatment,” Metalloved. Term. Obrab. Met., No. 3, 57 – 62 (2007).

  13. 13.

    A. V. Makarov, N. A. Davydova, I. Y. Malygina, et al., “Improvement of heat and thermal wear resistance of cemented chromium-nickel steel by nanostructuring frictional treatment,” Diagn., Res. Mechan. Mater. Struct., No. 5, 49 – 66 (2016).

  14. 14.

    A. V. Makarov and L. G. Korshunov, “Metal physics bases of nano-structuring by steel friction treatment,” Fiz. Met. Metalloved., 120(3), 327 – 336 (2019)

    Google Scholar 

  15. 15.

    V. P. Kuznetsov, A. V. Makarov, A. E. Kiryakov, R. A Savrai, and A. V. Anikeev, “RF Patent 2458777, Method for strengthening treatment of component surfaces by smoothing,” Byull. Izobr. Polezn. Modeli, No. 23 (2012).

  16. 16.

    V. P. Kuznetsov, A. V. Makarov, S. G. Psakh’e, et al., “Tribological aspects of nano-structured smoothing of structural steels,” Fiz. Mezomekh., 17(3), 14 – 20 (2014).

    Google Scholar 

  17. 17.

    V. P. Kuznetsov, S. Y. Tarasov, and A. I. Dmitriev, “Nanostructuring burnishing and subsurface shear instability,” J. Mater. Proc. Technol., 217, 327 – 335 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    V. P. Kuznetsov, I. Y., Smolin A. I. Dmitriev, et al., “Toward control of subsurface strain accumulation in nanostructuring burnishing on thermostrengthened steel,” Surf. Coat. Technol., 285, 171 – 178 (2016).

  19. 19.

    V. P. Kuznetsov, V. G. Gorgots, and E. M. Kuznetsova, “RF Patent 131711, Smoothing tool for nano-structuring a component surface layer,” Byull. Izobr. Polezn. Modeli, No. 24 (2013).

  20. 20.

    A. V. Makarov, P. A. Skorynina, A. S. Yurovskii, and A. L. Osintseva, “Effect of production conditions of nano-structuring friction treatment on the structure and phase composition, and strength of metastable austenitic steel,” Fiz. Met. Metalloved., 118(12), 1300 – 1311 (2017).

    Google Scholar 

  21. 21.

    A. V. Makarov, P. A. Skorynina, E. G. Volkova, and A. L. Osintseva, “Effect of heating on th structure, phase composition, and micro-mechanical properties of metastable austenitic steel strengthened by nano-structuring and friction treatment,” Fiz. Met. Metalloved., 119(12), 1260 – 1267 (2018).

    Google Scholar 

  22. 22.

    A. V. Makarov, G. V. Samoilova, N. V. Gavrilov, et al., “Effect of preliminary nanostructuring frictional treatment on the efficiency of nitriding of metastable austenitic steel in electron beam plasma,” AIP Conf. Proc., 1915(030011), 1 – 5 (2017).

    Google Scholar 

  23. 23.

    N. V. Lezhnin, A. V. Makarov, N. V. Gavrilov, et al., “Improving the scratch test properties of plasma-nitrided stainless austenitic steel by preliminary nanostructuring frictional treatment,” AIP Conf. Proc., 2053, No. 040050, 1 – 5 (2018).

    Google Scholar 

  24. 24.

    R. A. Savrai, A. V. Makarov, I. Y. Malygina, and E. G. Volkova, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part I: Microstructure and surface properties,” Mater. Sci. Eng. A, 734, 506 – 512 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    A. V. Makarov, I. Yu. Malygina, S. V. Burov, and R. A. Savrai, “RF Patent 2643289, Method for ultrasonic strengthening treatment for components,” Byull. Izobr. Polezn. Modeli, No. 4 (2018)

  26. 26.

    A. V. Makarov, R. A. Savrai, I. Y. Malygina, et al., “Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment,” AIP Conf. Proc., 2053(020006), 105 (2018).

    Google Scholar 

  27. 27.

    R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: Mechanical properties,” Mater. Sci. Eng. A, 734, 513 – 518 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    S. K. Ganapathi and D. A. Rigney, “An HREM study of the nanocrystalline material produced by sliding wear processes,” Scr. Metall., 24(9), 1675 – 1677 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    L. G. Korshunov, V. A. Shabashov, N. L. Chernenko, and V. P. Pilyugin, “Effect of stressed state of friction contact areas on deformation of the structure of a surface layer and tribological properties of steels and alloys,” Fiz. Metal. Metalloved., 105(1), 70 – 85 (2008).

    CAS  Google Scholar 

  30. 30.

    A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, et al., “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol., 205(3), 841 – 852 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    D. I. Vichuzhanin, A. V. Makarov, S. V. Smirnov, et al., “Stress strained state and damage during friction strengthening treatment of a flat steel surface by sliding a cylindrical indenter,” Probl. Mashinostr. Nadezh. Mashin, No. 6, 61 – 69 (2011).

  32. 32.

    V. P. Kuznetsov, I. Yu. Smolin, A. N. Dmitriev, et al., “Finiteelement modeling of nano-structuring smoothing,” Fiz. Mezomekh., 14(6), 87 – 97 (2011).

    Google Scholar 

  33. 33.

    J. G. Li, M. Umemoto, Y. Todaka, and K. Tsuchiya, “Role of strain gradient on the formation of nanocrystalline structure produced by severe plastic deformation,” J. Alloys and Compounds, 434 – 435, 290 – 293 (2007).

    Google Scholar 

  34. 34.

    V. Panin, A. Kolubaev, S. Tarasov, and V. Popov, “Subsurface layer formation during sliding friction” Wear, 249, No. 10 – 11, 860 – 867 (2002).

  35. 35.

    A. I. Rudskoi, A. A. Bogatov, D. Sh. Nukhov, and A. O. Talkushkin, “New method of intense plastic deformation of metals,” Metalloved. Term. Obrab. Met., No. 1, 5 – 8 (2018).

  36. 36.

    L. G. Korshunov, A. V. Makarov, V. M. Schastlivtsev, et al., “Structure ad wear resistance of steel U8 treated with a laser,” Fiz. Metal. Metalloved., 66(5), 948 – 957 (1988).

    CAS  Google Scholar 

  37. 37.

    L. G. Korshunov, A. V. Makarov, and N. L. Chernenko, “Structural aspects of wear resistance of martensitic class steels,” Fiz. Metal. Metalloved., 78(4), 128 – 146 (1994).

    CAS  Google Scholar 

  38. 38.

    A. V. Makarov, R. A. Savrai, É. S. Gorkunov, et al., “Structure, mechanical properties, features of deformation and failure during static and cyclic loading of hardened structural steel subjected to combined deformation-thermal nano-structuring treatment,” Fiz. Mezomekhan., 17(1), 5 – 20 (2014)

    Google Scholar 

Download references

The authors thank I. Yu. Malygina, L. G. Korshunov, A. S. Yurovskii, A. L. Osintseva, N. V. Lezhnin, G. I. Samoilova, N. V. Gavrilov, S. V. Buriv, A. S. Mamaev, and T. E. Kurenyi for participation and joint work published in 2017 – 2019. Work was performed within the scope of state assignment on the theme No. AAAA-A18-118020190116-6 (project No. 18-10-2-39) and No. AAA-A18-118020790147-4.

Research was carried out in the section of electron microscopy of TsKP Test Center of Nanotechnology and Promising Materials, IFM UrO RAN and in TsKP Plastometriya IMASh UrO RAN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 62 – 69, January, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.V., Savrai, R.A., Skorynina, P.A. et al. Development of Methods for Steel Surface Deformation Nanostructuring. Met Sci Heat Treat (2020). https://doi.org/10.1007/s11041-020-00513-4

Download citation

Key words

  • steel
  • nanostructuring
  • strengthening
  • friction treatment
  • plasma nitriding