Advertisement

Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 651–658 | Cite as

Effect of Hardening Heat Treatment on the Structure and Properties of a Three-Layer Composite of Type ‘VT23 – 08ps – 45KhNM’ Obtained by Explosion Welding

  • D. V. LazurenkoEmail author
  • I. A. Bataev
  • V. I. Mali
  • M. A. Esikov
  • A. A. Bataev
HEAT AND THERMOMECHANICAL TREATMENT
  • 24 Downloads

Bimetals produced by explosion welding of titanium alloy VT23 and steel 45KhNM through an intermediate layer of steel 08ps followed by a heat treatment consisting of quenching and tempering are studied. The three-layer composite is subjected to metallographic analysis prior to and after the heat treatment with the help of an optical microscope and a scanning electron microscope equipped with an energy dispersive analyzer. The chemical composition and the hardness of the welded materials and of various regions of the weld are determined, and the changes in these parameters after the quenching and tempering are assessed.

Key words

explosion welding hardening heat treatment metastable phases intermetallics 

Notes

The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation (Presidential Grant No. 14.Z56.17.3251-MK).

References

  1. 1.
    N. F. Kazakov, Diffusion Welding of Metals [in Russian], Metallurgiya (1976), 312 p.Google Scholar
  2. 2.
    B. Sabirov, “Production of bimetallic transition tube elements for the ILC cryomodule,” JINR News, 4, 19 (2008).Google Scholar
  3. 3.
    L. B. Pervukhin, S. V. Serikov, I. K. Ustinov, and O. L. Pervukhin, “Production of steel – titanium bimetal by explosion welding and its application in heat exchangers of nuclear power plants,” Titan, No. 1(23), 37 – 40 (2009).Google Scholar
  4. 4.
    I. Ya. Sokol, Structure and Corrosion of Metals and Alloys [in Russian], Metallurgiya, Moscow (1989), 400 p.Google Scholar
  5. 5.
    G. Ya. Vorob’eva, Corrosion Resistance of Metals in Aggressive Environments of Chemical Productions [in Russian], Khimiya, Moscow (1975), 816 p.Google Scholar
  6. 6.
    A. I. Akulov, G. I. Bel’chuk, and V. P. Demyantsevich, Technology and Equipment for Fusion Welding [in Russian], Mashinostroenie, Moscow (1977), 432 p.Google Scholar
  7. 7.
    R. Lison and J. F. Stelzer, “Diffusion welding of reactive and refractory metals to stainless steel,” Welding J. (Miami, Fla), 58, 306 – 314 (1979).Google Scholar
  8. 8.
    M. Ghosh, S. Kundu, S. Chatterjee, and B. Mishra, “Influence of interface microstructure on the strength of the transition joint between Ti – 6Al – 4V and stainless steel,” Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 36, 1891 – 1899 (2005).CrossRefGoogle Scholar
  9. 9.
    M. R. Soltan Mohammadi and S. F. Kashani Bozorg, “Mechanical assessment of dissimilar diffusion joints of CP-Ti to stainless steel,” Adv. Mater. Res., 1737 – 1745 (2011).Google Scholar
  10. 10.
    M. Ghosh, S. Kundu, S. Chatterjee, and B. Mishra, “Influence of interface microstructure on the strength of the transition joint between Ti – 6Al – 4V and stainless steel,” Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 36(7), 1891 – 1899 (2005).CrossRefGoogle Scholar
  11. 11.
    M. Fazel-Najabadi, S. F. Kashani-Bozorg, and A. Zarei-Hanzaki, “Joining of CP-Ti to 304 stainless steel using friction stir welding technique,” Mater. Design, 31, 4800 – 4807 (2010).CrossRefGoogle Scholar
  12. 12.
    I. D. Zakharenko, Explosion Welding of Metals [in Russian], Nauka i Tekhnika, Minsk (1990), 205 p.Google Scholar
  13. 13.
    J. Song, A. Kostka, M. Veehmayer, and D. Raabe, “Hierarchical microstructure of explosive joints: Example of titanium to steel cladding,” Mater. Sci. Eng. A, 528(6), 2641 – 2647 (2011).CrossRefGoogle Scholar
  14. 14.
    P. Manikandan, K. Hokamoto, A. A. Deribas, et al., “Explosive welding of titanium/stainless steel by controlling energetic conditions,” Mater. Trans., 47(8), 2049 – 2055 (2006).CrossRefGoogle Scholar
  15. 15.
    S. A. A. Akbari, S. T. S. Al-Hassani, and A. G. Atkins, “Bond strength of explosively welded specimens,” Mater. Design, 29(7), 1334 – 1352 (2008).CrossRefGoogle Scholar
  16. 16.
    Yu. P. Trykov, V. G. Shmorgun, and L. M. Gurevich, “Titanium – steel: from bimetal to intermetallic composites, Izv. VolgGTU, 2(10), 5 – 14 (2008).Google Scholar
  17. 17.
    O. L. Pervukhina, A. A. Berdychenko, L. B. Pervukhin, and D. V. Oleinikov, “Effect of the composition of atmosphere on formation of titanium-steel joint under explosion welding,” Izv. VolgGTU, No. 9, 51 – 54 (2006).Google Scholar
  18. 18.
    Yu. N. Malyutina, N. V. Stepanova, A. G. Cherkov, and L. V. Chuchkova, “Welding of unlike materials with the use of intermediate inserts containing copper and tantalum,” Obrab. Met. (Tekhnol., Oborud., Instr.), No. 4(69), 61 – 71 (2015).Google Scholar
  19. 19.
    V. M. Kudinov and A. Ya. Koroteev, Explosion Welding in Metallurgy [in Russian], Metallurgiya, Moscow (1978), 168 p.Google Scholar
  20. 20.
    Alloy Phase Diagrams, ASM Handbook (1992), 383 p.Google Scholar
  21. 21.
    A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties [in Russian], VILS – MATI, Moscow (2009), 520 p.Google Scholar
  22. 22.
    A. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2003), 784 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • D. V. Lazurenko
    • 1
    Email author
  • I. A. Bataev
    • 1
  • V. I. Mali
    • 2
  • M. A. Esikov
    • 2
  • A. A. Bataev
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia
  2. 2.M. A. Lavrent’ev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations