Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 625–632 | Cite as

Effect of Electron Beam Power Density on the Structure of Titanium Under Non-Vacuum Electron-Beam Treatment

  • I. V. IvanovEmail author
  • A. Thoemmes
  • V. Y. Skiba
  • A. A. Ruktuev
  • I. A. Bataev

The structure of surface layers of titanium alloy OT4 subjected to non-vacuum electron-beam treatment with power density of the beam equal to 0.28 – 0.90 kW/cm2 is analyzed. The microstructure of different zones of the material after the treatment and the crystallographic texture appearing in the surface layers as a result of the electron-beam impact are studied. The microhardness of the remelted layers and of the heat-affected zone is measured. Mathematical modeling is used to obtain the distribution of the temperatures and the heating and cooling rates over cross section of the treated material.

Key words

electron-beam treatment titanium alloy OT4 crystallographic texture microhardness mathematical modeling 


The work has been performed with financial support of the Russian Federation via the Ministry of Education and Science of the Russian Federation (Agreement No. 14.610.21.0013, Project Identifier RFMEF161017X0013).


  1. 1.
    B. E. Paton, N. P. Trigub, and S. V. Anokhin, Electron-Beam Melting of Refractory and Highly Reactive Metals [in Russian], Naukova Dumka, Kiev (2008), 309 p.Google Scholar
  2. 2.
    R. Bakshin, “The state of the art in electron beam melting and refining,” J. Metals, 43, 42 – 44 (1991).Google Scholar
  3. 3.
    A. N. Pikulin, S. V. Anokhin, and V. A. Berezos, “Fabrication of ingots of complexly alloyed titanium alloy VT23 by the method of EBM,” Sovrem. Elektrometall., 2(119), 17 – 20 (2015).CrossRefGoogle Scholar
  4. 4.
    L. E. Murr, S.M. Gaytan, and D. A. Ramirez, “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol., 28(1), 1 – 24 (2102).Google Scholar
  5. 5.
    I. M. Poletika, M. G. Golkovskii, and M. V. Perovskaya, “Non-vacuum electron-beam hardening of the surface layer of a steel,” Fiz. Mezomekh., 9(S1), 181 – 184 (2006).Google Scholar
  6. 6.
    M. G. Golkovskii, Hardening and Non-Vacuum Cladding with Relativistic Electron Beam. Technological Possibilities of the Method, LAPLAMBERT Academic Publishing, Saarbrücken (2013), 290 p.Google Scholar
  7. 7.
    Y. I. Golubenko, N. K. Kuksanov, and R. A. Salimov, “Extraction of a powerful electron beam into the atmosphere through two parallel titanium foils,” J. Appl. Mech. Tech. Phys., 51(2), 145 – 147 (2010).CrossRefGoogle Scholar
  8. 8.
    M. E. Veis, A. I. Grischenko, and V. M. Zaitsev, “High voltage electron accelerators at a power of up to 90 kW,” Int. J. Rad. Appl. Instr., Pt. C, Rad. Phys. Chem., 35(4 – 6), 658 – 661 (1990).Google Scholar
  9. 9.
    V. V. Samoilenko, D. V. Lazurenko, and I. A. Polyakov, “Effect of rolling and heat treatment on the structure and properties of layers formed on titanium billets by the method of electronbeam melting,” Obrab. Met. (Tekhnol., Oborud., Instr.), No. 2, 55 – 63 (2015).Google Scholar
  10. 10.
    GOST 9450–76. Measurements of Microhardness by Diamond Instruments Indentation [in Russian], Izd. Standartov, Moscow (1993), 35 p.Google Scholar
  11. 11.
    V. Yu. Skiba, V. N. Pushnin, and I. A. Erokhin, “Analysis of the stress-strain condition of a material under high-power heating with high-frequency currents,” Obrab. Met. (Tekhnol., Oborud., Instr.), No. 3, 90 – 102 (2014).Google Scholar
  12. 12.
    T. Tabata, R. Ito, and S. Tsukui, “Semiempirical algorithms for dose evaluation in electron-beam processing,” Int. J. Rad. Appl. Instr., Pt. C, Rad. Phys. Chem., 35(4 – 6), 821 – 825 (1990).Google Scholar
  13. 13.
    H. P. Lee, C. Esling, and H. J. Bynge, “Development of the rolling texture in titanium,” Texture, Stress, Microstruct., 7(4), 317 – 337 (1988).Google Scholar
  14. 14.
    B. A. Kolachev, Metal Science and Heat Treatment of Nonferrous Metals and Alloys [in Russian] (1981), 542 p.Google Scholar
  15. 15.
    A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys [in Russian], Nauka, Moscow (1994), 303 p.Google Scholar
  16. 16.
    R. M. Afonso, J. M. Chaves, and O. Florêncio, “Effect of rapid solidification on microstructure and elastic modulus of β Ti – xNb – 3Fe alloys for implant applications,” Adv. Eng. Mater., 19(6), 1 – 6 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • I. V. Ivanov
    • 1
    Email author
  • A. Thoemmes
    • 1
  • V. Y. Skiba
    • 1
  • A. A. Ruktuev
    • 1
  • I. A. Bataev
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations