Skip to main content
Log in

Surface Hardening of Titanium Under Non-Vacuum Electron-Beam Cladding of an Aluminum-Containing Powder Mixture

  • ELECTRON-BEAM TREATMENT
  • Published:
Metal Science and Heat Treatment Aims and scope

Special features of the structure of surface layers formed on billets of commercial-purity titanium VT1-0 by cladding a powder aluminum-titanium mixture with an electron beam removed into air atmosphere are studied. X-ray phase analysis and transmission electron microscopy are used to show that the material remelted by the electron beam is Ti3Al titanium aluminide. The hardness of the deposited layer is 540 – 610 HV. The behavior of the material is studied under the conditions of sliding friction and friction against fixed abrasive particles. The results reflect decrease in the friction factor and increase in the wear resistance of the clad material as compared to commercially pure titanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. Salehi and R. Hosseini, “Structural characterization of novel Ti-Cu intermetallic coatings,” Surf. Eng., 12, 221 – 224 (1996).

    Article  Google Scholar 

  2. V. E. Oliker, S. N. Endrzheevskaya, V. D. Dobrovol’skii, et al., “Structure and properties of atomized coatings of intermetallic Fe – Ti and Ni – Ti powders,” Powder Metall. Met. Ceram., 32, 222 – 225 (1993).

    Article  Google Scholar 

  3. M. N. Mokgalaka, S. L. Pityana, P. A. I. Popoola, et al., “NiTi intermetallic surface coatings by laser metal deposition for improving wear properties of Ti – 6Al – 4V substrates,” Adv. Mater. Sci. Eng., 2014, Art. 363917 (2014).

  4. Y. Zhang, H. Li, and K. Zhang, “Investigation of the laser melting deposited TiAl intermetallic alloy on titanium alloy,” Adv. Mater. Res., 146 – 147, 1638 – 1641 (2011).

  5. B. A. Grinberg and M. A. Ivanov, Ni 3 Al and TiAl Intermetallics: Microstructure and Deformation Behavior [in Russian], UrO RAN, Ekaterinburg (2002), 360 p.

  6. G. Sauthoff, Intermetallics, Weinheim, VCH, New York, Basel, Cambridge, Tokyo (1995), 165 p.

  7. K. S. Vecchio, “Synthetic multifunctional metallic-intermetallic laminate composites,” JOM, 57(3), 25 – 31 (2005).

  8. A. V. Kartavykh, S. D. Kaloshkin, V. V. Cherdyntsev, et al., “Application of microstructured intermetallics in turbine manufacture. Pt. 1. Present state and prospects (a review),” Inorg. Mater., Appl. Res., 4(1), 12 – 20 (2013).

    Article  Google Scholar 

  9. S. V. Chernobay, “Welding of alloys of titanium aluminides (a review),” Avtomat. Svarka, No. 8, 26 – 31 (2013).

  10. A. F. Vaisman, M. G. Golkovskii, A. I. Korchagin, et al., “Technological applications of industrial electron accelerators of ELV series,” in: M. Markovits and J. Shiloh (eds.), BEAMS’98, Proc. 12th Int. Conf. on High-Power Particle Beams, Rafael, Israel; IEEE, New York (1998), Vol. 2, pp. 1039 – 1044.

  11. I. Bataev, D. Mul, A. Bataev, et al., “Structure and tribological properties of steel after non-vacuum electron beam cladding of Ti, Mo and graphite powders,” Mater. Charact., 112, 60 – 67 (2016).

    Article  Google Scholar 

  12. I. Bataev, M. Golkovskii, A. Bataev, et al., “Surface hardening of steels with carbon by non-vacuum electron-beam processing,” Surf. Coat. Technol., 242, 164 – 169 (2014).

    Article  Google Scholar 

  13. D. O. Mul’, N. S. Belousova, D. S. Krivezhenko, et al., “Electron-beam deposition of titanium- and tantalum-containing powder mixtures on specimens of steel 40Kh,” Obrab. Met., Tekhnol., Obordud., Instr., No. 2(63), 117 – 126 (2014).

  14. M. G Golkovskii, I. A. Bataev, A. A. Bataev, et al., “Atmospheric electron-beam surface alloying of titanium with tantalum,” Mater. Sci. Ang. A, Struct. Mater. Prop. Microstruct. Proc., 578, 310 – 317 (2013).

  15. O. Lenivtseva, I. Bataev, M. Golkovskii, et al., “Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon,” Appl. Surf. Sci., 355, 320 – 326 (2015).

    Article  Google Scholar 

  16. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1970), 376 p.

  17. J. C. Rawers and D. E. Alman, “Fracture characteristics of metal/intermetallic laminar composites produced by reaction sintering and hot pressing,” Comp. Sci. Technol., 54(4), 379 – 384 (1995).

    Article  Google Scholar 

  18. Yu. P. Trykov, V. N. Arisova, S. A. Volobuev, et al., “Examination of the fine structure of the weld zone of explosion-welded titanium-steel joints,” Weld. Int., 13(1), 64 – 66 (1999).

    Article  Google Scholar 

  19. Yu. P. Trykov, “Complex technological processes of production of composite materials and articles,” Nauka Proizvod., No. 1, 20 – 23 (2000).

  20. Yu. P. Trykov and V. G. Shmorgun, Properties and Operating Capacity of Laminar Composites [in Russian], Politekhnik, Volgograd (1999), 189 p.

  21. J. Kajuch, J. Short, and J. J. Lewandowski, “Deformation and fracture behavior of Nb in Nb5Si3 /Nb laminates and its effect of laminate toughness,” Acta Meall. Mater., 43(5), 1955 – 1967 (1995).

    Article  Google Scholar 

  22. I. A. Bataev, A. A. Bataev, V. I. Mali, et al., “Nucleation and growth of titanium aluminide in explosion-welded laminar composite,” Fiz. Met. Metalloved., 113(10), 998 – 1007 (2012).

    Google Scholar 

  23. D. Lazurenko, I. Bataev, V. Mali, et al., “Explosively welded multilayer Ti – Al composites: structure, and transformation during heat treatment,” Mater. Design, 102, 122 – 130 (2016).

    Article  Google Scholar 

  24. Jean-Marie Dubois, “An introduction to complex metallic alloys and to the CMAnetwork of excellence,” in: Basics of Thermodynamics and Phase Transitions in Complex Intermetallics, World Scientific Publishing, Singapore (2008), pp. 1 – 31.

  25. G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976).

  26. V. R. Ryabov, Welding of Aluminum and Its Alloys with Other Metals [in Russian], Naukova Dumka, Kiev (1983), 264 p.

  27. Ge. E. Totten and D. Scott MacKenzie (eds.), Handbook of Aluminum. Vol. 2. Alloy Production and Materials Manufacturing, Marcel Dekker Inc., New York, Basel (2003), 724 p.

Download references

The work has been performed with financial assistance of the Russian Foundation for Basic Research within Scientific Project No. 15-38-20776mol a ved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bataev.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 10, pp. 4 – 10, October, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bataev, I.A., Lazurenko, D.V., Golkovskii, M.G. et al. Surface Hardening of Titanium Under Non-Vacuum Electron-Beam Cladding of an Aluminum-Containing Powder Mixture. Met Sci Heat Treat 60, 619–624 (2019). https://doi.org/10.1007/s11041-019-00328-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00328-y

Key words

Navigation