Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 594–601 | Cite as

Effect of Heat Treatment on Dendritic Segregation and High-Temperature Strength of Single Crystals of Ni3Al-Base Rhenium-Alloyed Intermetallic Alloys

  • K. B. PovarovaEmail author
  • O. A. Bazyleva
  • A. A. Drozdov
  • A. E. Morozov
  • E. G. Arginbaeva
  • A. V. Antonova

The nature of stability of dendritic microsegregation of rhenium in single crystals of intermetallic (γ′ + γ) alloys based on γ′-Ni3Al is determined under a high-temperature heat treatment and under creep and endurance tests. It is assumed that steady dendritic microsegregation of rhenium is a factor determining the high high-temperature strength of rhenium-containing (γ′ + γ) alloys based on γ′-Ni3Al.

Key words

intermetallic single crystal heat treatment segregation high-temperature strength 


The work has been performed with financial support of the Russian Foundation for Basic Research (Grants 13-03-00200-a and 13-0312133ofi m).


  1. 1.
    C. T. Li, Ni 3 Al Aluminide Alloys. Structural Intermetallics, The Minerals, Metals and Materials Society (1993), pp. 365 – 377.Google Scholar
  2. 2.
    K. B. Povarova and O. A. Bannykh, “Principles of creation ofstructural alloys based on intermetallics. Parts 1 and 2,” Materialovedenie, No. 2, 27 – 33; No. 3, 29 – 37 (1999).Google Scholar
  3. 3.
    V. P. Buntushkin, O. A. Bazyleva, K. B. Povarova, and N. K. Kazanskaya, “Effect of structure on mechanical properties of alloyed Ni3Al intermetallics,” Metally, No. 3, 74 – 80 (1995).Google Scholar
  4. 4.
    K. B. Povarova, A. A. Drozdova, Yu. A. Bondarenko, et al., “Effect of directed crystallization on the structure and properties of single crystals of a Ni3Al-base alloy alloyed withW, Mo, Cr and REM,” Metally, No. 4, 35 – 40 (2014).Google Scholar
  5. 5.
    K. B. Povarova, Yu. A. Bondarenko, A. A. Drozdov, et al., “Effect of directed crystallization of the structure and properties of single crystals of a Ni3Al-base alloy with Cr, Mo,W, Ti, Co, Re and REM additions,” Metally, No. 1, 50 – 58 (2015).Google Scholar
  6. 6.
    R. C. Reed and R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, UK (2008).Google Scholar
  7. 7.
    Yu. R. Kablov, E. N. Kablov, E. V. Kozlov, et al., Structure and Properties of Intermetallic Materials with Nanophase Reinforcement [in Russia], Izd. Dom MISiS, Moscow (2008), 328 p.Google Scholar
  8. 8.
    E. N. Kablov, Yu. A. Bondarenko, A. B. Echin, et al., “Development of the process of directed crystallization of GTE blades from refractory and intermetallic alloys with directed structure,” in: Vestnik MGTU Im. N. E. Baumana, Special Issue “Promising Structural Materials and Technologies” [in Russian], Moscow (2011), pp. 20 – 26.Google Scholar
  9. 9.
    V. V. Gerasimov, E. M. Visik, and V. V. Gerasimov, “Technological aspects of casting of parts of the hot duct of GTE from intermetallic nickel alloys of type VKNA with single crystal structure,” Liteishchik Rossii, No. 2, 19 – 23 (2012).Google Scholar
  10. 10.
    Ai. Cheng, X. Zhao, L. Li, et al., “Influence of withdrawal rate on last solidification path of a Mo-rich Ni3Al based single crystal superalloy,” J. Alloys Compd., 623, 362 – 366 (2015).CrossRefGoogle Scholar
  11. 11.
    A. A. Drozdov, K. B. Povarova, A. E. Morozov, et al., “Dendritic segregation in single crystals of Ni3Al-base intermetallic alloys alloyed with Cr, Mo, W, Ti, Co, Re,” Metally, No. 6, 48 – 5 (2015).Google Scholar
  12. 12.
    Ping Li, Shu-suo Li, and Ya-fang Han, “Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX,” Intermetallics, No. 19, 182 – 186 (2011).Google Scholar
  13. 13.
    O. A. Bazyleva, Yu. A. Bondarenko, O. B. Timofeeva, and A. N. Afanas’ev-Khodykin, “Effect of annealing and high-temperature heating during soldering on the structure and mechanical properties of an alloy based on nickel aluminide,” Materialovedenie, No. 3, 15 – 20 (2014).Google Scholar
  14. 14.
    Zhiang Kong and Shusuo Lu, “Effects of temperature and stress on the creep behavior of a Ni3Al base single crystal alloy,” Progr. Natural Sci. Mater. Int., 23(2), 205 – 210 (2013).CrossRefGoogle Scholar
  15. 15.
    O. A. Bazyleva, E. G. Arginbaeva, T. V. Fesenko, and V. G. Kolodochkina, “A study of the effect of segregation inhomogeneity on the structure and endurance of nickel-base intermetallic alloys,” Materialovedenie, No. 6, 7 – 12 (2014).Google Scholar
  16. 16.
    S. V. Nikolaev, Joint Alloying of Nickel with Rhenium and Transition Metals of Groups V – VI, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (2014), 24 p.Google Scholar
  17. 17.
    E. N. Kablov, N. V. Petrushin, L. B. Vasilenok, and G. I. Morozova, “Rhenium in refractory nickel alloys,” Materialovedenie, No. 2, 23 – 29; No. 3, 38 – 43 (2001).Google Scholar
  18. 18.
    A. I. Epishin, A. O. Rodin, B. S. Bokshtein, et al., “Interdiffusion in binary alloys of the Ni – Re system,” Fiz. Met. Metalloved., 116(2), 184 – 190 (2015).Google Scholar
  19. 19.
    Y. M. Youssef, P. D. Lee, K. C. Mills, and R. C. Reed, “On the diffusion behavior of Os in the binary Ni – Os system,” Mater. Sci. Technol., 26(10), 1173 – 1176 (2010).CrossRefGoogle Scholar
  20. 20.
    M. S. A. Karunaratne, P. Carter, and R. C. Reed, “Interdiffusion in the face centered cubic phase of the Ni – Re, Ni – Ta and Ni – W systems between 900 and 1300°C,” Mater. Sci. Eng. A, 821, 229 – 233 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. B. Povarova
    • 1
    Email author
  • O. A. Bazyleva
    • 2
  • A. A. Drozdov
    • 3
  • A. E. Morozov
    • 1
  • E. G. Arginbaeva
    • 2
  • A. V. Antonova
    • 1
  1. 1.A. A. Baikov Institute of Metallurgy and Materials ScienceMoscowRussia
  2. 2.Federal State Unitary Enterprise “VIAM”MoscowRussia
  3. 3.Federal State Unitary Enterprise “TsNIIChermet”MoscowRussia

Personalised recommendations