Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 580–588 | Cite as

Thermal Effect on the Structural and Phase Condition and Mechanical Properties of Ultrafine-Grained Titanium Alloy VT16 in the Temperature Range of 293 – 923 K

  • G. P. GrabovetskayaEmail author
  • I. V. Ratochka
  • I. P. Mishin
  • O. N. Lykova
  • O. V. Zabudchenko

The effect of pre-recrystallization annealing on the evolution of the structural and phase state and the deformation and fracture behavior of ultrafine-grained titanium alloy VT16 obtained by pressing with change of the deformation axis and gradual lowering of the temperature within 1023 – 723 K is studied. It is shown that the process of pre-recrystallization annealing is accompanied by retrogression of the strained structure, which lowers the strength characteristics, and by a β → α phase transformation and redistribution of the alloying elements, which keep the strength properties at a high level.

Key words

titanium alloy  ultrafine-grained state  evolution of structure  mechanical properties  fracture 


The work has been performed with the help of the equipment of the “NANOTEKh” Collective Use Center of the Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences within the program for basic research for state academies of sciences for 2013 – 2020.


  1. 1.
    G. A. Salishchev, R.M. Galleev, S. P. Malysheva, et al., “Formation of submicrocrystalline structure in titanium and titanium alloys and their mechanical properties,” Metalloved. Term. Obrab. Met., No. 2, 19 – 26 (2006).Google Scholar
  2. 2.
    G. P. Grabovetskaya, E. N. Stepanova, I. V. Ratochka, et al., “Structure and mechanical properties of ultrafine grained Ti – 6Al – 4V alloy made by applying reversible hydrogen alloying,” Inorg. Mater.: Appl. Res., 4(2), 92 – 97 (2013).CrossRefGoogle Scholar
  3. 3.
    S. L. Demakov, O. A. Elkina, A. G. Illarionov, et al., “Effect of conditions of rolling deformation on formation of ultrafinegrained structure in double-phase titanium alloy subjected to severe plastic deformation,” Fiz. Met. Metalloved., 105(6), 638 – 646 (2008).Google Scholar
  4. 4.
    H. Yilmazer, M. Niinomi, M. Nakai, et al., “Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion,” Mater. Sci. Eng. C, 33, 2499 – 2507 (2013).CrossRefGoogle Scholar
  5. 5.
    O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., “Evolution of structure and mechanical properties of nanostructured titanium under thermomechanical treatments,” Materialovedenie, No. 3, 25 – 30 (2003).Google Scholar
  6. 6.
    Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001), 232 p.Google Scholar
  7. 7.
    P. P. Pal-Val and L. N. Pal-Val, “Low-temperature internal friction and stability of nanostructured metals,” Metalloved. Term. Obrab. Met., No. 5, 28 – 32 (2012).Google Scholar
  8. 8.
    V. L. Gapontsev and V. V. Kondrat’ev, “Diffusion phase transformations in nanocrystalline alloys under severe plastic deformation,” Dokl. Akad. Nauk, 385(5), 1 – 4 (2002).Google Scholar
  9. 9.
    B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, et al., “Phase transformations in Ti – Fe alloys induced by high-pressure torsion,” Adv. Eng. Mater., 17(12), 1835 – 1841 (2015).CrossRefGoogle Scholar
  10. 10.
    S. S. Manokin, M. B. Ivanov, and Yu. R. Kolobov, “Structural and phase transformations of orthorhombic martensite in (α + β) titanium alloy VT16 under deformation and thermal impacts,” Nauch. Vedom., Ser. Matem. Fiz., No. 11, Issue 23, 65 – 69 (2011).Google Scholar
  11. 11.
    O. A. Chikova, E. V. Shishkina, A. N. Petrova, and I. G. Brodova, “About the effect of heating temperature on the structure and phase composition of submicrocrystalline alloy AMTs,” Metalloved. Term. Obrab. Met., No. 4, 19 – 22 (2014).Google Scholar
  12. 12.
    G. G. Yapici, I. Karaman, and Z. P. Luo, “Microstructure and mechanical properties of severely deformed Ti – 6Al – 4V and Ti – 6A – 4V – TiC metal matrix composite,” in: Proc. III Symp. Ultrafine Grained Materials, Charlotte, North California, USA, March 14 – 18, 2004, pp. 435 – 438.Google Scholar
  13. 13.
    G. P. Grabovetskaya, I. P. Mishin, and Yu. P. Kolobov, “Effect of precipitation hardening on the laws and mechanisms of creep in copper with submicron grain size,” Izv. Vysh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokr., No. 2, 38 – 43 (2009).Google Scholar
  14. 14.
    S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray and Optoelectronic Analysis [in Russian], MISiS, Moscow (2002), 358 p.Google Scholar
  15. 15.
    A. A. Popov, A. G. Illarionov, S. I. Stepanov, et al., “Effect of quenching temperature on the structure and properties of a titanium alloy. Structure and phase composition,” Fiz. Met. Metalloved., 115(5), 539 – 548 (2014).Google Scholar
  16. 16.
    S. P. Malysheva, R. M. Galleev, G. A. Salishchev, et al., “Effect of high plastic deformations and recrystallization annealing on the density of titanium,” Fiz. Met. Metalloved., 82(2), 117 – 120 (1996).Google Scholar
  17. 17.
    I. I. Novikov and V. K. Portnoy, Superplasticity of Alloys with Ultrafine Grains [in Russian], Metallurgiya, Moscow (1981), 168 p.Google Scholar
  18. 18.
    M. V. Maltsev and N. I. Kashnikov, “A study of decomposition of martensite under continuous heating of titanium alloy VT16,” Fiz. Met. Metalloved., 45(2), 426 – 428 (1978).Google Scholar
  19. 19.
    B. A. Bilby and I. V. Christian, “Martensitic transformations,” Usp. Fiz. Nauk, LXX(3), 3 – 50 (1960).Google Scholar
  20. 20.
    V. E. Panin and V. E. Erogushkin, “Deformable solid as a nonlinear hierarchically organized system,” Fiz. Mezomekhan., 14(3), 7 – 26 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. P. Grabovetskaya
    • 1
    Email author
  • I. V. Ratochka
    • 1
  • I. P. Mishin
    • 2
  • O. N. Lykova
    • 2
  • O. V. Zabudchenko
    • 1
  1. 1.Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations