Skip to main content
Log in

Thermal Effect on the Structural and Phase Condition and Mechanical Properties of Ultrafine-Grained Titanium Alloy VT16 in the Temperature Range of 293 – 923 K

  • TITANIUM ALLOYS
  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of pre-recrystallization annealing on the evolution of the structural and phase state and the deformation and fracture behavior of ultrafine-grained titanium alloy VT16 obtained by pressing with change of the deformation axis and gradual lowering of the temperature within 1023 – 723 K is studied. It is shown that the process of pre-recrystallization annealing is accompanied by retrogression of the strained structure, which lowers the strength characteristics, and by a β → α phase transformation and redistribution of the alloying elements, which keep the strength properties at a high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. G. A. Salishchev, R.M. Galleev, S. P. Malysheva, et al., “Formation of submicrocrystalline structure in titanium and titanium alloys and their mechanical properties,” Metalloved. Term. Obrab. Met., No. 2, 19 – 26 (2006).

  2. G. P. Grabovetskaya, E. N. Stepanova, I. V. Ratochka, et al., “Structure and mechanical properties of ultrafine grained Ti – 6Al – 4V alloy made by applying reversible hydrogen alloying,” Inorg. Mater.: Appl. Res., 4(2), 92 – 97 (2013).

    Article  Google Scholar 

  3. S. L. Demakov, O. A. Elkina, A. G. Illarionov, et al., “Effect of conditions of rolling deformation on formation of ultrafinegrained structure in double-phase titanium alloy subjected to severe plastic deformation,” Fiz. Met. Metalloved., 105(6), 638 – 646 (2008).

    Google Scholar 

  4. H. Yilmazer, M. Niinomi, M. Nakai, et al., “Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion,” Mater. Sci. Eng. C, 33, 2499 – 2507 (2013).

    Article  Google Scholar 

  5. O. A. Kashin, E. F. Dudarev, Yu. R. Kolobov, et al., “Evolution of structure and mechanical properties of nanostructured titanium under thermomechanical treatments,” Materialovedenie, No. 3, 25 – 30 (2003).

  6. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain-Boundary Diffusion and Properties of Nanostructured Materials [in Russian], Nauka, Novosibirsk (2001), 232 p.

  7. P. P. Pal-Val and L. N. Pal-Val, “Low-temperature internal friction and stability of nanostructured metals,” Metalloved. Term. Obrab. Met., No. 5, 28 – 32 (2012).

  8. V. L. Gapontsev and V. V. Kondrat’ev, “Diffusion phase transformations in nanocrystalline alloys under severe plastic deformation,” Dokl. Akad. Nauk, 385(5), 1 – 4 (2002).

    Google Scholar 

  9. B. B. Straumal, A. R. Kilmametov, Yu. Ivanisenko, et al., “Phase transformations in Ti – Fe alloys induced by high-pressure torsion,” Adv. Eng. Mater., 17(12), 1835 – 1841 (2015).

    Article  Google Scholar 

  10. S. S. Manokin, M. B. Ivanov, and Yu. R. Kolobov, “Structural and phase transformations of orthorhombic martensite in (α + β) titanium alloy VT16 under deformation and thermal impacts,” Nauch. Vedom., Ser. Matem. Fiz., No. 11, Issue 23, 65 – 69 (2011).

  11. O. A. Chikova, E. V. Shishkina, A. N. Petrova, and I. G. Brodova, “About the effect of heating temperature on the structure and phase composition of submicrocrystalline alloy AMTs,” Metalloved. Term. Obrab. Met., No. 4, 19 – 22 (2014).

    Google Scholar 

  12. G. G. Yapici, I. Karaman, and Z. P. Luo, “Microstructure and mechanical properties of severely deformed Ti – 6Al – 4V and Ti – 6A – 4V – TiC metal matrix composite,” in: Proc. III Symp. Ultrafine Grained Materials, Charlotte, North California, USA, March 14 – 18, 2004, pp. 435 – 438.

  13. G. P. Grabovetskaya, I. P. Mishin, and Yu. P. Kolobov, “Effect of precipitation hardening on the laws and mechanisms of creep in copper with submicron grain size,” Izv. Vysh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokr., No. 2, 38 – 43 (2009).

  14. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray and Optoelectronic Analysis [in Russian], MISiS, Moscow (2002), 358 p.

  15. A. A. Popov, A. G. Illarionov, S. I. Stepanov, et al., “Effect of quenching temperature on the structure and properties of a titanium alloy. Structure and phase composition,” Fiz. Met. Metalloved., 115(5), 539 – 548 (2014).

    Google Scholar 

  16. S. P. Malysheva, R. M. Galleev, G. A. Salishchev, et al., “Effect of high plastic deformations and recrystallization annealing on the density of titanium,” Fiz. Met. Metalloved., 82(2), 117 – 120 (1996).

    Google Scholar 

  17. I. I. Novikov and V. K. Portnoy, Superplasticity of Alloys with Ultrafine Grains [in Russian], Metallurgiya, Moscow (1981), 168 p.

  18. M. V. Maltsev and N. I. Kashnikov, “A study of decomposition of martensite under continuous heating of titanium alloy VT16,” Fiz. Met. Metalloved., 45(2), 426 – 428 (1978).

    Google Scholar 

  19. B. A. Bilby and I. V. Christian, “Martensitic transformations,” Usp. Fiz. Nauk, LXX(3), 3 – 50 (1960).

  20. V. E. Panin and V. E. Erogushkin, “Deformable solid as a nonlinear hierarchically organized system,” Fiz. Mezomekhan., 14(3), 7 – 26 (2011).

    Google Scholar 

Download references

The work has been performed with the help of the equipment of the “NANOTEKh” Collective Use Center of the Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences within the program for basic research for state academies of sciences for 2013 – 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 28 – 36, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabovetskaya, G.P., Ratochka, I.V., Mishin, I.P. et al. Thermal Effect on the Structural and Phase Condition and Mechanical Properties of Ultrafine-Grained Titanium Alloy VT16 in the Temperature Range of 293 – 923 K. Met Sci Heat Treat 60, 580–588 (2019). https://doi.org/10.1007/s11041-019-00323-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00323-3

Key words

Navigation