Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 560–565 | Cite as

Possibility of Elevation of Mechanical Properties of Sand-Cast Copper Silumins

  • S. V. MedvedevaEmail author
  • V. S. Zolotarevskii
  • O. A. Yakovtseva

The effect of heat treatment modes of copper silumins with 4% Cu and different concentrations of silicon and magnesium crystallized in sand molds on their microstructure and mechanical properties is studied. It is shown that the level of the strength and ductility parameters of the copper silumins after the treatment depends primarily on the degree of dissolution of phase CuAl2 and that the concentration of magnesium in copper silumins with 4% Si + 4% Cu should not exceed 0.1 – 0.12%, which is sufficient for raising the strength characteristics without noticeable degradation of the ductility. The optimum mode for aging of alloy Al – 4% Si – 3.9% Cu – 0.13% Mg (160°C, 8 h), which provides σ0.2 = 330 MPa, σr = 400 MPa and δ = 2%, is determined by computation.

Key words

aluminum alloys silumins aging sand casting 


The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation within the program for raising the competitiveness of NITU “MISiS” among the leading world scientific and educational centers for 2013 – 2020 and the State Specifications for Higher Educational Institutions for 2014 – 2016.


  1. 1.
    Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vols. 1 and 2, ASM International (1990).Google Scholar
  2. 2.
    K. T. Kashyap, S. Murali, K. S. Raman, and K. S. S. Murthy, “Casting and heat treatment variables of Al – 7Si – Mg alloy,” Mater. Sci. Technol., 9, 189 (1993).CrossRefGoogle Scholar
  3. 3.
    G. Hebert, D. Dube, and R. Tremblay, “Tensile and fatigue behavior of thin-walled cast A383.0 components,” Mater. Sci. Eng. A, 552, 89 – 96 (2012).CrossRefGoogle Scholar
  4. 4.
    P. Huter, Ph. Renhart, S. Oberfrank, et al., “High- and low-cycle fatigue influence of silicon, copper, strontium and iron on the hypo-eutectic Al – Si – Cu and Al – Si – Mg cast alloys in cylinder heads,” Int. J. Fatigue, 82, 588 – 601 (2016).CrossRefGoogle Scholar
  5. 5.
    A. M. A. Mohamed, F. H. Samuel, Saleh Ali Alkahtani, “Microstructure, tensile properties and fracture behavior of high-temperature Al – Si – Mg – Cu cast alloys,” Mater. Sci. Eng. A, 577, 64 – 72 (2013).CrossRefGoogle Scholar
  6. 6.
    M. S. Salleh, M. Z. Omar, and J. Syarif, “The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al – 5% Si – Cu alloys,” J. Alloys Compd., 621, 121 – 130 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Hedge and K. N. Prabhu, “Modification of eutectic silicon in Al – Si alloys,” J. Mater. Sci., 43(9), 3009 – 3027 (2013).Google Scholar
  8. 8.
    A. R. Farkoosh and M. Pekguleryuz, “Enhanced mechanical properties of an Al – Si – Cu – Mg alloy at 300°C: Effects of Mg and Q-precipitate phase,” Mater. Sci. Eng. A, 621, 277 – 286 (2015).CrossRefGoogle Scholar
  9. 9.
    S. D. Mc. Donald and A. K. Dahle, “Modification-related porosity formation in hypoeutectic aluminum-silicon,” Alloys Metall. Mater. Trans. A, 35A(6), 1829 – 1837 (2004).CrossRefGoogle Scholar
  10. 10.
    A. M. A. Mohamed, F. H. Samuel and S. Alkahtani, “Influence of Mg and solution heat treatment on the occurrence of incipient melting in Al – Si – Cu – Mg cast alloys,” Mater. Sci. Eng. A, 543, 22 – 34 (2012).CrossRefGoogle Scholar
  11. 11.
    I. Aguilera-Luna, M. J. Castro-Roman, J. C. Escobedo-Bocardo, et al., “Effect of cooling rate and Mg content on the Al – Si eutectic for Al – Si – Cu – Mg alloys,” Mater. Charact., 95, 211 – 218 (2014).CrossRefGoogle Scholar
  12. 12.
    L. N. Altunina, N. A. Aritova, V. S. Zolotarevskii, et al., “Evaluation of mechanical properties of castings of aluminum alloys from the cast structure,” Metalloved. Term. Obrab. Met., No. 8, 9 – 14 (1972).Google Scholar
  13. 13.
    A. M. Samuel, J. Gauthier, and F. H. Samuel, “Microstructural aspects of the dissolution and melting of Al2Cu phase in Al – Si alloys during solution heat treatment,” Metall. Mater. Trans. A, 27A, 1785 – 1798 (1996).CrossRefGoogle Scholar
  14. 14.
    A. M. A. Mohamed, A. M. Samuel, F. H. Samuel, and H. W. Doty, “Influence of additives on the microstructure and tensile properties of near-eutectic Al – 10.8% Si cast alloy,” Mater. Design, 30, 3943 – 3957 (2009).CrossRefGoogle Scholar
  15. 15.
    H. Lio, Y. Sun, and G. Sun, “Correlation between mechanical properties and amount of dendritic α-Al phase in as cast near eutectic Al – 11.6% Si alloys modified with strontium,” Mater. Sci. Eng. A, 335, 62 – 66 (2002).CrossRefGoogle Scholar
  16. 16.
    Di-qing Wan, “Si phase morphology and mechanical properties of ZL107 Al alloy improved by La modification and heat treatment,” Trans. Nonferrous Met. Soc. China, 22, 1051 – 1054 (2012).CrossRefGoogle Scholar
  17. 17.
    A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Prospects of development,” Lit’e Metallurg., No. 4, 38 – 45 (2015).Google Scholar
  18. 18.
    V. S. Zolotarevskii and N. A. Belov, Physical Metallurgy of Castable Aluminum Alloys [in Russian], MISiS, Moscow (2005), 376 p.Google Scholar
  19. 19.
    M. O. Shabani and A. Mazahery, “Automotive copper and magnesium containing cast aluminum alloys: Report on the correlation between yttrium modified microstructure and mechanical properties,” Russian J. Nonferr. Met., 55(5), 436 – 442 (2014).CrossRefGoogle Scholar
  20. 20.
    C. G. Shivaprasad, S. Narendranath, Vijay Desai, et al., “Influence of combined grain refinement and modification on the microstructure and mechanical properties of Al – 12Si, Al – 12Si – 4.5Cu alloys,” Proc. Mater. Sci., 5, 1368 – 1375 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Gauthier, P. R. Louchez, and F. H. Samuel, “Heat treatment of 319.2 aluminum automotive alloy. Pt. 1. Solution heat treatment,” Cast Metals, 8(2), 91 – 114 (1995).CrossRefGoogle Scholar
  22. 22.
    A. M. A. Mohamed and F. H. Samuel, Review on the Heat Treatment of Al – Si – Cu/Mg Casting Alloys, Heat Treatment – Conventional and Novel Applications, In Tech. (2012).Google Scholar
  23. 23.
    C. M. Dinnis and M. O. Otte, “The influence of strontium on porosity formation in Al – Si alloys,” Metall. Mater. Trans. A, 35, 3531 – 3540 (2004).CrossRefGoogle Scholar
  24. 24.
    M. A. Moustafa, F. H. Samuel, H. W. Doty, and S. Valtierra, “Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al – Si eutectic alloys,” Int. J. Cast Metal Res., 14, 235 – 253 (2002).CrossRefGoogle Scholar
  25. 25.
    M. Zeren, K. Karakulak, and S. Gümü°, “Influence of Cu addition on microstructure and hardness of near-eutectic Al – Si – xCu-alloys,” Trans. Nonferr. Met. Soc. China, 21, 1698 – 1702 (2011).CrossRefGoogle Scholar
  26. 26.
    M. L. Bernshtein and A. G. Rakhshtadt, Metal Science and Heat Treatment of Steel, Vol. 1 [in Russian], Metallurgiya, Moscow (1983), 352 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Medvedeva
    • 1
    Email author
  • V. S. Zolotarevskii
    • 1
  • O. A. Yakovtseva
    • 1
  1. 1.National Research Technological University “MISiS”MoscowRussia

Personalised recommendations