Metal Science and Heat Treatment

, Volume 60, Issue 9–10, pp 571–573 | Cite as

Microstructure and Mechanical Properties of Composite Materials Based on the Al – Si – Mg System Reinforced with SiC Particles and Obtained by Pressure Crystallization

  • A. Yu. ChuryumovEmail author
  • I. A. Mohamed

Composite materials based on aluminum alloy Al – 9% Si – 0.6% Mg are obtained by stirring ceramic particles of silicon carbide into the melt and subsequent pressure crystallization. The effect of the content of ceramic particles on the properties of the composites is studied. It is shown that the joint use of two operations, i.e., stirring-in of particles and pressure crystallization, lowers the porosity and improves the distribution of particles in the structure. The composite materials obtained possess high mechanical properties and promise successful application in the automotive and aerospace industries.

Key words

composite materials microstructure silicon carbide mechanical properties pressure crystallization 


The authors are obliged to the Ministry of Education and Science of the Russian Federation for the financial support within the framework of the Program for Raising the Competiveness of NITU “MISiS” (Grant No. K1-2014-026).


  1. 1.
    M. M. Schwartz, Composite Materials, Vol. 1. Properties, Nondestructive Testing and Repair, ASM International, New Jersey, USA, Prentice-Hall Inc. (1997).Google Scholar
  2. 2.
    A. Daoud, “Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration,” Mater. Sci. Eng. A, 391, 114 – 120 (2005).CrossRefGoogle Scholar
  3. 3.
    A. Mazahery and M. Shabani, “Characterization of cast A356 alloy reinforced with nano SiC composites,” Trans. Nonfer. Met. Soc. China, 22, 275 – 280 (2102).Google Scholar
  4. 4.
    H. Frenkel and B. Mordike, “Magnesium strengthened by SiC nanoparticles,” Mater. Sci. Eng. A, 298, 193 – 199 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Lan, Y. Yang, and X. Li, “Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method,” Mater. Sci. Eng. A, 386, 284 – 290 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Shabani and A. Mazahery, “Prediction of wear properties in A356 matrix composite reinforced with B4C particulates,” Synth. Met., 161, 1226 – 1231 (2011).CrossRefGoogle Scholar
  7. 7.
    J. Bae, K. Kung, S. Yoo, et al., “Design and fabrication of a metal-composite hybrid wheel with a friction damping layer for enhancement of ride comfort,” Composite Struct., 133, 576 – 684 (2015).CrossRefGoogle Scholar
  8. 8.
    B. N. Sarada, M. P. L. Srinivasa, and G. Ugrasen, “Hardness and wear characteristics of hybrid aluminum metal matrix composites produced by stir casting technique,” Mater. Today. Proc., 2, 2878 – 2885 (2015).CrossRefGoogle Scholar
  9. 9.
    Z. Du and J. Li, “Study of the preparation of Al2O3sfSiCp/Al composites and their wear-resisting properties,” J. Mater. Proc. Technol., 151, 298 – 301 (2004).CrossRefGoogle Scholar
  10. 10.
    T. M. Guo and C. Tsao, “Tribological behavior of aluminum/SiC/nickel-coated graphite hybrid composites,” Mater. Sci. Eng. A, 333, 134 – 145 (2002).CrossRefGoogle Scholar
  11. 11.
    T. M. Guo and C. Tsao, “Tribological behavior of self-lubricating aluminum/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method,” Composites Sci. Technol., 60, 65 – 74 (2000).CrossRefGoogle Scholar
  12. 12.
    H. Fu, K. Han, and J. Song, “Wear properties of Saffil/Al, Saffil/A2O3/Al and Saffil/SiC/Al hybrid metal matrix composites,” Wear, 256, 705 – 713 (2004).CrossRefGoogle Scholar
  13. 13.
    R. J. Arsenault, “The strengthening of aluminum alloy 6061 by fiber and platelet silicon carbide,” Mater. Sci. Eng. A, 64, 171 – 181 (1984).CrossRefGoogle Scholar
  14. 14.
    I. W. Hall, T. Kyono, and A. Diwanji, “On the fibre/matrix interface in boron/aluminum metal matrix composites,” J. Mater. Sci., 22, 1743 – 1748 (1987).CrossRefGoogle Scholar
  15. 15.
    M. T. Abou El-khair, A. Lotfy, A. Daoud, and A. M. El-Sheikh, “Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites,” Mater. Sci. Eng. A, 528, 2353 – 2362 (2011).CrossRefGoogle Scholar
  16. 16.
    M. Kamara and A. Ramesh, “Effect of squeeze pressure on mechanical properties of LM6 aluminum alloy matrix hybrid composites,” J. Eng. Appl. Sci., 10, 6051 – 6058 (2015).Google Scholar
  17. 17.
    P. Cavaliere, E. Cerri, and P. Leo, “Effect of treatments on mechanical properties and damage evolution in thixoformed aluminum alloys,” Mater. Character., 55, 35 – 42 (2005).CrossRefGoogle Scholar
  18. 18.
    W. Zhang, D. Chai, G. Ran, and J. Zhou, “Study on microstructure and tensile properties of in situ fiber reinforced aluminum matrix composites,” Mater. Sci. Eng. A, 476, 157 – 161 (2008).CrossRefGoogle Scholar
  19. 19.
    T. Okabe, M. Nishikawa, N. Takeda, and H. Sekine, “Effect of matrix hardening on the tensile strength of alumina fiber-reinforced aluminum matrix composites,” Acta Mater., 54, 2557 – 2566 (2006).CrossRefGoogle Scholar
  20. 20.
    D. Rees, “Deformation and fracture of metal matrix particulate composites under combined loadings,” Composites A, 29, 171 – 182 (1998).CrossRefGoogle Scholar
  21. 21.
    W. Moæko and Z. L. Kowalewski, “Mechanical properties of the A359/SiCp metal matrix composite at wide range of strain rates,” Appl. Mech. Mater., 82, 166 – 171 (2011).CrossRefGoogle Scholar
  22. 22.
    Y. Li, K. T. Ramesh, and E. S. C. Chin, “The compressive viscoplastic response of an A359_SiCp metal-matrix composite and of the A359 aluminum alloy matrix,” Int. J. Solids Struct., 37, 7547 – 7562 (2000).CrossRefGoogle Scholar
  23. 23.
    Z. H. Tan, B. J. Pang, D. T. Qin, et al., “The compressive properties of 2024Al matrix composites reinforced with high content of Si particles at various strain rates,” Mater. Sci. Eng. A, 489, 302 – 309 (2008).CrossRefGoogle Scholar
  24. 24.
    R. Rodriguez-Castro, R. C. Wetherhold, and M. H. Kelestemur, “Microstructure and mechanical behavior of functionally graded Al A359_SiCp composite,” Mater. Sci. Eng. A, 323, 445 – 456 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Research Technological University “MISiS,”MoscowRussia

Personalised recommendations