Skip to main content
Log in

X-Ray Diffraction Analysis of Ultrasound-Treated Alloy 6061 by Rietveld Method

  • Published:
Metal Science and Heat Treatment Aims and scope

Aluminum alloy 6061 is studied after an ultrasonic treatment conducted at different vibration amplitudes in the casting process. The alloy is subjected to a diffraction analysis with processing of the spectra by the Rietveld method using the MAUD (Materials Analysis Using Diffraction) software. The texture parameters, the rms strain, the lattice parameter, and the crystallite size are determined by the Rietveld technique. It is shown that the porosity of the alloy deceases considerably after the ultrasonic treatment, which also affects positively the texture of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. R. R. Zheng, Y. Wu, S. L. Liao, et al., “Microstructure and mechanical properties of Al/(Ti, W)C composites prepared by microwave sintering,” J. Alloys Compd., 590, 168 – 175 (2014).

    Article  Google Scholar 

  2. Dursun Tolga and Soutis Sostas, “Recent developments in advanced aircraft aluminum alloys,” Mater. Design, 56, 862 – 871 (2014).

    Article  Google Scholar 

  3. J. Patel and K. Morsi, “Effect of mechanical alloying on the microstructure and properties of Al – Sn – Mg alloy,” J. Alloys Compd., 540, 100 – 106 (2012).

    Article  Google Scholar 

  4. Mostafa Mansourinejad and Bahram Mirzakhani, “Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy,” Trans. Nonferr. Met. Soc. China, 22, 2072 – 2079 (2012).

    Article  Google Scholar 

  5. C. S. Ramesh, R. Keshavamurthy, Praveennath G. Koppad, and K. T. Kashyap, “Role of particle stimulated nucleation in recrystallization of hot extruded Al6061/SiCp composites,” Trans. Nonferr. Met. Soc. China, 23, 53 – 58 (2013).

    Article  Google Scholar 

  6. Si-Young Chang, Ki-Seung Lee, Seung-Hoe Choi, and Dong Hyuk Shin, “Effect of ECAP on microstructure and mechanical properties of a commercial 6061 Al alloy produced by powder metallurgy,” J. Alloys Compd., 354, 216 – 220 (2003).

    Article  Google Scholar 

  7. S. Y. Changa, L. C. Tsaob, T. Y. Li, and T. H. Chuang, “Joining 6061 aluminum alloy with Al – Si – Cu filler metals,” J. Alloys Compd., 488, 174 – 180 (2009).

    Article  Google Scholar 

  8. Fai Tan Chee and R. Said Mohamad, “Effect of hardness test on precipitation hardening aluminum alloy 6061-T6,” Chiang Mai J. Sci., 36, 76 – 286 (2009).

    Google Scholar 

  9. S. T. Adedokun, “Comparison of properties of heat treated aluminum alloy 6061 in magnetic and non-magnetic field environments,” J. Mater. Environ., 4, 99 – 102 (2013).

    Google Scholar 

  10. S. H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding,” Mater. Sci. Eng. A, 325, 228 – 235 (2002).

    Article  Google Scholar 

  11. J. K. Kim, H. G. Jeong, S. I. Hong, et al., “Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing,” Mater. Sci. Eng. A, 45, 901 – 907 (2001).

    Google Scholar 

  12. H. Puga, S. Costa, J. Barbosa, et al., “Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy,” J. Mater. Proc. Technol., 211, 1729 – 1735 (2011).

    Article  Google Scholar 

  13. Aghayani M. Khosro, and B. Niroumand, “Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy,” J. Alloys Compd., 509, 114 – 122 (2011).

    Article  Google Scholar 

  14. Zhi Qiang Zhang, Qi Chi Le, and Jian Zhong Cui, “Microstructures and mechanical properties of AZ80 alloy treated by pulsed ultrasonic vibration,” Trans. Nonferr. Met. Soc. China, 18, 113 – 116 (2008).

    Article  Google Scholar 

  15. Watanabe Takehiko, Shiroki Masataka, Yanagisawa Atsushi, and Sasaki Tomohiro, “Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration,” J. Mater. Proc. Technol., 210, 1646 – 1651 (2010).

    Article  Google Scholar 

  16. Aghayani M. Khosro, and B. Niroumand, “Effects of ultrasonic treatment on microstructure and tensile strength of AZ91 magnesium alloy,” J. Alloys Compd., 509, 114 – 122 (2011).

    Article  Google Scholar 

  17. H. K. Fenga, S. R. Yua, Y. L. Li, and L. Y. Gong, “Effect of ultrasonic treatment on microstructures of hypereutectic Al – Si alloy,” J. Mater. Proc. Technol., 208, 330 – 335 (2008).

    Article  Google Scholar 

  18. Lei Yao, Hai Hao, Shou-Hua Ji, et al., “Effects of ultrasonic vibration on solidification structure and properties of Mg – 8Li – 3Al alloy,” Trans. Nonferr. Met. Soc. China, 21, 1241 – 1246 (2011).

    Article  Google Scholar 

  19. N. C. Popa, “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Phys., 31, 176 – 180 (1998).

    Google Scholar 

  20. N. C. Popa, “Texture in Rietveld refinement,” J. Appl. Phys., 25, 611 – 616 (1992).

    Google Scholar 

  21. J. Ghosh, S. K. Chattopadhayay, A. K. Meikap, and S. K. Chatterjee, “Microstructure characterization of titanium-base aluminum alloys by x-ray diffraction using Warren–Averbach and Rietveld method,” J. Alloys Compd., 453, 131 – 137 (2008).

    Article  Google Scholar 

  22. A. Das and H. R. Kotadia, “Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al – Si alloy,” Mater. Chem. Phys., 125, 853 – 859 (2011).

    Article  Google Scholar 

  23. Qingmei Liu, Yong Zhang, Yao Song et. al., “Influence of ultrasonic vibration on mechanical properties and microstructure of 1Cr18Ni9Ti stainless steel,” Mater. Design, 28, 1949 – 1952 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyuan Chen.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 22 – 27, September, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Tang, B. X-Ray Diffraction Analysis of Ultrasound-Treated Alloy 6061 by Rietveld Method. Met Sci Heat Treat 60, 574–579 (2019). https://doi.org/10.1007/s11041-019-00319-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00319-z

Key words

Navigation