Skip to main content
Log in

Resistance of Austenitic Nitrogen Cr – Ni – Mn Steels to Microbiological Corrosion

  • CORROSION-RESISTANT STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

The resistance of high-strength corrosion-resistant nitrogen Cr – Ni – Mn steels to microbiological corrosion is investigated. It is shown that lowering of the nickel content and elevation of the content of manganese lowers the corrosion strength of the steels in a synthesized solution of sulfate-reducing bacteria, whereas the additions of copper and nitrogen raise this strength. Surface defects and roughness intensify localization of the corrosion damage and accelerate the corrosion process in the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. Wilmott, “Stress corrosion cracking in high pressure line pipe at near neutral pH conditions,” Corros. Mater., 22(3), 235 – 246 (1997).

    Google Scholar 

  2. R. Gangloff and R. G. Kelly, “Microbe-enhanced environmental fatigue crack propagation in HY 130 steel,” Corrosion, 50, 345 – 354 (1994).

    Article  Google Scholar 

  3. M. J. Wilmott, T. R. Jack, G. Van Boven, et al., “Pipeline stress corrosion cracking: crack growth sensitivity studies under simulated field conditions,” Corrosion, 242, 1 – 19 (1996).

    Google Scholar 

  4. H. A. Videla, Mannual of Biocorrosion, CRC Press, Boca Raton, FL (1996), 273 p.

    Google Scholar 

  5. N. J. E. Dowling and J. Guezennec, “Microbially influenced corrosion,” in: C. J. Hurst, et al. (eds.), Manual of Environmental Microbiology, ASM Press, Washington D.C. (1997), pp. 842 – 855.

  6. Z. Lewandowski and H. Bevenal, “Mechanisms of microbially influenced corrosion,” Marine Indust. Biofoul., 4, 35 – 64 (2009).

    Article  Google Scholar 

  7. D. Enning, H. Venzlaff, J. Garrelfs, et al., “Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust,” Environ. Microbiol., 14(7), 1772 – 1787 (2012).

    Article  Google Scholar 

  8. S. A. Lubenskii, “Corrosion resistance of pipe steels in environment of thionic sulfur-reducing bacteria,” Zashch. Korr. Okhr. Okruzh. Sredy, No. 2, 7 – 10 (1996).

  9. S. K. Zhigletsova, V. B. Rodin, S. V. Kobelev, et al., “A study of initial stages of biocorrosion of steel,” Prikl. Biokhim. Mikrobiol., 36(6), 637 – 641 (2000).

    Google Scholar 

  10. K. Osazawa and N. Okato, “Effect of alloying elements, especially nitrogen, on the initiation of pitting in stainless steel,” in: E. Steahle and H. Okada (eds.), Passivity and Its Breakdown on Iron and Iron Base Alloys, NACE, TX, Houston (1976), p. 135.

  11. S. Azuma, H. Miyuki, and T. Kudo, “Effect of alloying nitrogen on crevice corrosion of austenitic stainless steels,” ISIJ Int., 36(7), 793 – 798 (1996).

    Article  Google Scholar 

  12. S. Yu. Nizhegorodov, S. A. Voloskov, V. A. Trusov, et al., “Corrosion of steels under the action of microorganisms,” Metalloved. Term. Obrab. Met., No. 4, 44 – 48 (2008).

  13. A. G. Grigor’yants, I. N. Shiganov, E. A. Starozhuk, et al., Structural Cryogenic Austenitic High-Strength Weldable Steel and Method of Its Production, Patent 2545856 RF, MPK C22C33/04, C22C38/58, C22C38/60 [in Russian], patentee: the Russian Federation, Ministry of Industry and Trade of the Russian Federation, No. 2013136360/02, appl. 02.082013, publ. 10.04. 2015.

  14. M. R. Filonov, V. E. Bazhenov, A. G. Glebov, et al., Structural Cryogenic Austenitic High-Strength Corrosion-Resistant, in Bioactive Environments in Particular, Weldable Steel and Method of Its Treatment, Patent 2584315 RF, MPK C22C38/58, C21D8/02 [in Russian], patentee: FGAOVO “National Research Technological University “MISiS,” No. 2015121315/02, appl. 04.06.2015, publ. 20.05.2016.

  15. L. M. Kaputkina, I. V. Smarygina, D. E. Kaputkin, et al., “Effect of nitrogen addition on physicochemical properties and corrosion resistance of corrosion-resistant steels,” Metal Sci. Heat Treat., 57(7), 395 – 401 (2015).

    Article  Google Scholar 

  16. L. M. Kaputkina, E. V. Blinov, I. V. Smarygina, et al., “Structure and strength of lownickel stainless steel alloyed with nitrogen,” Steel in Translation, 45(11), 836 – 843 (2015).

    Article  Google Scholar 

  17. L. M. Kaputkina, A. G. Svyazhin, I. V. Smarygina, and V. E. Kindop, “Influence of nitrogen and copper on hardening of austenitic chromium-nickel-manganese stainless steel,” CIS Iron Steel Rev., 11, 30 – 34 (2016).

    Article  Google Scholar 

  18. L. M. Kaputkina, A. G. Svyazhin, I. V. Smarygina, et al., “High-strength corrosion-resistant cryogenic steel alloyed with nitrogen,” Metallurgist, 60(7), 802 – 809 (2016).

    Article  Google Scholar 

  19. L. M. Kaputkina, A. G. Svyazhin, and I. V. Smarygina, “Corrosion resistance of high-strength austenitic nitrogen chromiumnickel-manganese steel in various environments,” Izv. Vysh. Uchebn. Zaved., Chern. Metall., 59(9), 663 – 670 (2016).

    Article  Google Scholar 

  20. R. E. Hungate, “A roll tube method for cultivation of strict anaerobes,” in: J. R. Norris and D. W. Ribbons (eds.), Methods in Microbiology, Academic Press, London (1969), Vol. 3B, pp. 117 – 132.

  21. F. Widdel and F. Back, “Gram-negative mesophilic sulfate-reducing bacteria,” in: A. Balows, et al. (eds.), The Prokaryotes, Berlin, Heidelberg, New York, Springer (1992), Vol. 3, pp. 3352 – 3378.

  22. H. G. Truper and H. G. Schlegel, “Sulfur metabolism in thiorhodaceae. Quantitative measurement of growing cells of Chromatium okenii,” Antonie van Leeuwenhoek (1964), Vol. 30, pp. 225 – 238.

    Article  Google Scholar 

  23. S. A. Saltykov, Stereometric Metallography [in Russian], Metallurgiya, Moscow (1976), 272 p.

    Google Scholar 

Download references

The results of the tests have been obtained within implementation of a state assignment of the Ministry of Education and Science of the Russian Federation (RFMEFI57514X0071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kaputkina.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 2, pp. 56 – 62, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaputkina, L.M., Smarygina, I.V., Borzenkov, I.A. et al. Resistance of Austenitic Nitrogen Cr – Ni – Mn Steels to Microbiological Corrosion. Met Sci Heat Treat 60, 115–120 (2018). https://doi.org/10.1007/s11041-018-0248-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0248-8

Key words

Navigation