Advertisement

Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 799–804 | Cite as

Finite-Element Analysis of Residual Stresses Generated Under Nitriding Process: a Three-Dimensional Model

  • J. Sawicki
  • P. Siedlaczek
  • A. Staszczyk
SIMULATION

A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman–Philips method.

Key words

residual stresses finite-element method nitriding numerical simulation 3D-model 

References

  1. 1.
    E. Brinksmeiera, J. Cammettb, W, Konigc et al., “Residual stresses – measurement and causes in machining processes,” CIRP Annals – Manuf. Technol., 31(2), 491 – 510 (1982).Google Scholar
  2. 2.
    J. L. Christopher and D. A. Lados, “Effect of processing residual stresses on fatigue crack growth behavior of structural materials: Experimental approaches and microstructural mechanisms,” Metall. Mater. Trans., 43A(1), 87 – 107 (2012).Google Scholar
  3. 3.
    G. A. Webster, “Role of residual stresses in engineering applications,” Mater. Sci. Forum, 347349, 1 – 11 (2000).Google Scholar
  4. 4.
    J. Sawicki, M. Gorecki, Ł. Kaczmarek, et al., “Increasing the durability of pressure dies by modern surface treatment methods,” Chiang Mai J. Sci., 40(5), 886 – 897 (2013).Google Scholar
  5. 5.
    J. Sawicki, M. Dudek, L. Kaczmarek, et al., “Numerical analysis of thermal stresses in carbon films obtained by RF PECVP method on surface of cannulated screw,” Arch. Metall. Mater., 58(1), 77 – 81 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Mukai, T. Matsumoto, D. Ju, et al., “Modeling of numerical simulation and experimental verification for carburizing-nitriding quenching process,” Trans. Nonfer. Met. Soc. China, 16, Suppl. 2, 566 – 671 (2006).Google Scholar
  7. 7.
    S. Lee, D. K. Matlock, and C. J. Van Tyne, “Comparison of two finite element simulation codes used to model the carburizing of steel,” Comput. Mater. Sci., 68, 47 – 54 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Naidoo Lingamanaik, B. K. Chen, and P. Palanisamy, “Finite element analysis on the formation and distribution of residual stresses during quenching of low carbon bainitic-martensitic large gears,” Comput. Mater. Sci., 79, 627 – 633 (2013).CrossRefGoogle Scholar
  9. 9.
    R. M. Nejad, “Using three-dimensional finite element analysis for simulation of residual stresses in railway wheels,” Eng. Failure Anal., 45, 449 – 455 (2014).CrossRefGoogle Scholar
  10. 10.
    V. Leskovsek, B. Podgornik, and D. Nolan, “Modeling of residual stress profiles in plasma nitrided tool steel,” Mater. Charact., 59, 454 – 461 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Da Silva Rocha, T. Strohaecker, V. Tomala, and T. Hirsch, “Microstructure and residual stresses of a plasma-nitrided M2 tool steel,” Surf. Coat. Technol., 115, 24 – 31 (1999).CrossRefGoogle Scholar
  12. 12.
    S. S. Akhtar, A. F. M. Arif, and B. S. Yilbas, “Influence of multiple nitriding on the case hardening of H13 tool model: Experimental and numerical investigation,” Int. J. Adv. Manuf. Technol., 58(1 – 4), 7 – 70 (2012).Google Scholar
  13. 13.
    M. Yang and R. D. Sisson Jr, “Modeling the nitriding process of steels,” Adv. Mater. Proc., 170(7), 33 – 36 (2012).Google Scholar
  14. 14.
    M. Yang, C. Zimmerman, D. Donahue, and R. D. Sisson Jr, “Modeling the gas nitriding process of low alloy steels,” J. Mater. Eng. Perform., 22(7), 1892 – 1898 (2013).CrossRefGoogle Scholar
  15. 15.
    S. M. Hassani-Gangaraj and M. Guagliano, “Microstructural evolution during nitriding, finite element simulation and experimental assessment,” Appl. Surf. Sci., 271, 156 – 163 (2013).CrossRefGoogle Scholar
  16. 16.
    P. Cavaliere, G. Zavarise, and M. Perillo, “Modeling of the carburizing and nitriding processes,” Comp. Mater. Sci., 46(1), 26 – 35 (2009).CrossRefGoogle Scholar
  17. 17.
    P. Buchhagen and T. Bell, “Simulation of the residual stress development in the diffusion layer of low alloy plasma nitrided steels,” Comp. Mater. Sci., 7(1 – 2), 228 – 234 (1996).CrossRefGoogle Scholar
  18. 18.
    P. Depouhon, J. M. Sprauel, M. Mailhé, and E. Mermoz, “Mathematical modeling of residual stresses and distortions induced by gas nitriding of 32CrMoV13 steel,” Comp. Mater. Sci., 82, 178 – 190 (2014).CrossRefGoogle Scholar
  19. 19.
    P. Depouhon, J. M. Sprauel, and E. Mermoz, “Prediction of residual stresses and distortions induced by nitriding of complex 3D industrial parts,” CIRP Annals – Manuf. Technol., 64(1), 553 – 556 (2015).CrossRefGoogle Scholar
  20. 20.
    J. W. Waisman and A. Phillips, “Experiential stress analysis,” Proc. Soc., XI(2), 102 – 105 (1952).Google Scholar
  21. 21.
    J. Ratajski and T. Suszko, “Modeling of the nitriding process,” J. Mater. Proc. Technol., 195, 212 – 217 (2008).CrossRefGoogle Scholar
  22. 22.
    Y. Z. Shen, K. H. Oh, and D. N. Lee, “Nitrogen strengthening of interstitial-free steel by nitriding in potassium nitrate salt bath,” Mater. Sci. Eng., A434, 314 – 318 (2006).CrossRefGoogle Scholar
  23. 23.
    P. Kula, E. Wolowiec, R. Pietrasik, et al., “Non-steady state approach to the vacuum nitriding of tools,” Vacuum, 88, 1 – 7 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringLodz University of TechnologyLodzPoland

Personalised recommendations