Metal Science and Heat Treatment

, Volume 59, Issue 11–12, pp 755–760 | Cite as

Temperature Anomaly of Strength Properties in Deformed Magnesium Foil

  • D. A. Komkova
  • A. Yu. Volkov

Experiments on megaplastic deformation of magnesium at room temperature by transverse extrusion and subsequent cold rolling are described. The microstructure and mechanical properties of a 120-μm thick magnesium foil with total true compressive strain e ~ 6.0 are studied. It is shown that low-temperature annealing increases the strength and ductility properties of the specimens. The detected abnormal growth in the yield strength is explained from the standpoint of thermally activated processes of rearrangement of the dislocation structure and locking of dislocations.

Key words

magnesium plastic deformation microstructure mechanical properties 


The work has been performed within Sate Specification of the FASO of Russia (Topic “Deformation” No. 01201463327) and with partial support of the Ural Branch of the Russian Academy of Sciences (Project No. 15-17-2-11).


  1. 1.
    E. F. Emly, Fundamentals of the Production and Treatment of Magnesium Alloys [in Russian], Metallurgiya, Moscow (1972), 192 p.Google Scholar
  2. 2.
    R. O. Kaibyshev and O. Sh. Sitdikov, “Structural changes in the process of plastic deformation of pure magnesium,” Fiz. Met. Metalloved., No. 6, 103 – 113 (1992).Google Scholar
  3. 3.
    Yong Jiang, Ding Chen, and Z. Jiang, “Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91,” Metalloved. Term. Obrab. Met., No. 12, 18 – 21 (2011).Google Scholar
  4. 4.
    D. P. Nugmanov and R. K. Islamgaliev, “Structure and mechanical properties of magnesium alloy AM60V after equal channel angular pressing and rolling,” Metalloved. Term. Obrab. Met., No. 1, 8 – 14 (2011).Google Scholar
  5. 5.
    S. Suwas, G. Gottstein, and R. Kumar, “Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium,” Mater. Sci. Eng. A, 471, 1 – 14 (2007).CrossRefGoogle Scholar
  6. 6.
    A. M. Vlasova, B. A. Gringberg, M. A. Ivanov, et al., “Locking of (c + a)-dislocations in magnesium single crystals in the absence of external stress,” Deform. Razrush. Mater., No. 4, 10 – 14 (2014).Google Scholar
  7. 7.
    B. I. Kamenetskii, A. L. Sokolov, A. Yu. Volkov, O. V. Antonova, and I. V. Klyukin, “A method of fabrication of foil from magnesium, RF Patent 2563077,” Byull. Izobr. Polezn. Modeli, No. 26 (2015), priority 29.07.2014, publ. 20.09.2015.Google Scholar
  8. 8.
    O. V. Antonova, A. Yu. Volkov, B. I. Kamenetskii, and D. A. Komkova, “Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature,” Mater. Sci. Eng. A, 651, 8 – 17 (2016).CrossRefGoogle Scholar
  9. 9.
    A. Yu. Volkov, O. V. Antonova, B. I. Kametentskii, et al., “Fabrication, structure, texture and mechanical properties of strongly deformed magnesium specimens,” Fiz. Met. Metalloved., 117(5), 538 – 548 (2016).Google Scholar
  10. 10.
    T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater., 61, 7035 – 7059 (2013).CrossRefGoogle Scholar
  11. 11.
    Z. R. Zeng, Y. M. Zhu, M. Z. Bian, “Annealing strengthening in a dilute Mg – Zn – Ca sheet alloy,” Scr. Mater., 107, 127 – 130 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Xin, X. Zhou, H. Chen, et al., “Annealing hardening detwinning deformation of Mg – 3Al – 1Zn alloy,” Mater. Sci. Eng. A, 594, 287 – 291 (2014).CrossRefGoogle Scholar
  13. 13.
    Y. Wang and H. Choo, “Influence of texture on Hall–Petch relationships in an Mg Alloy,” Acta Mater., 81, 83 – 97 (2014).CrossRefGoogle Scholar
  14. 14.
    B. A. Grinberg, O. V. Antonova, A. Yu. Volkov, and M. A. Ivanov, “The Non-monotonic temperature dependence of the yield stress in TiAl and CuAl alloys,” Intermetallics, 8, 845 – 853 (2000).CrossRefGoogle Scholar
  15. 15.
    B. A. Gringberg, M. A. Ivanov, O. V. Antonova, and A. M. Vlasova, “First observation of locking of dislocations in pure metal without external stress,” Kristallografiya, 57, 610 – 617 (2012).Google Scholar
  16. 16.
    B. A. Grinberg and M. A. Ivanov, “Strangeness of behavior of dislocations of a specific type: self-locking,” Deform. Razrush. Mater., No. 8, 2 – 26 (2015).Google Scholar
  17. 17.
    R. Gehrmann, M. M. Frommert, and G. Gottstein, “Texture effects on plastic deformation of magnetism,” Mater. Sci. Eng. A, 395, 338 – 349 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.M. N. Mikheev Institute of Metal PhysicsEkaterinburgRussia

Personalised recommendations