Skip to main content
Log in

Investigation of Triggering Stress for Martensitic Transformation in Titanium Alloy

  • Published:
Metal Science and Heat Treatment Aims and scope

The effect of the stability of β-phase (of the value of Moeq), of the thermal martensite, and of the rate of deformation on the triggering stress of martensitic transformation in alloy Ti – 10% V – 2% Fe – 3% Al is investigated. It is shown that the triggering stress increases with growth of Moeq in the presence of thermal martensite and with growth in the deformation rate from 10 – 4 to 10 – 1 sec – 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, “Stress-induced martensitic transformation of metastable β-titanium alloy,” Mater. Sci. Eng. A, 449, 322 – 325 (2007).

    Article  Google Scholar 

  2. T. W. Duerig, G. T. Terlinde, and J. C. Williams, “Phase transformation and tensile properties of Ti – 10V – 2F – 3Al,” Metall. Trans. A, 11A, 1987 – 1998 (1980).

    Article  Google Scholar 

  3. T. Grosdidier and M. J. Philippe, “Deformation induced martensite and superplasticity in a β-metastable titanium alloy,” Mater. Sci. Eng. A, 291, 218 – 223 (2000).

    Article  Google Scholar 

  4. F. Hideki, “Strengthening of α + β titanium alloys by thermomechanical processing,” Mater. Sci. Eng. A, 243, 103 – 108 (1998).

    Article  Google Scholar 

  5. R. Mythili, V. T. Paul, S. Saroja, et al., “Study of transformation behavior in a Ti – 4.4 Ta – 1.9 Ni alloy,” Mater. Sci. Eng. A, 39, 299 – 312 (2005).

    Article  Google Scholar 

  6. S. Neelakantan, D. S. Martin, P. E. J. Rivera-Diaz-del-Castillo, and S. van der Zwaag, “Plasticity induced transformation in a metastable β Ti-1023 alloy by controlled heat treatments,” Mater. Sci. Technol., 25, 1351 – 1358 (2009).

    Article  Google Scholar 

  7. Z. Wyatt and S. Ankem, “The effect of metastability on room temperature deformation behavior of β and α + β titanium alloys,” J. Mater. Sci., 45, 5022 – 5031 (2010).

    Article  Google Scholar 

  8. A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti – Al – Nb alloys,” Mater. Sci. Eng. A, 487, 14 – 19 (2008).

    Article  Google Scholar 

  9. C. Ouchi, H. Fukai, and K. Hasegawa, “Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α + β titanium alloy,” Mater. Sci. Eng. A, 263, 132 – 136 (1999).

    Article  Google Scholar 

  10. Q. Y. Sun, S. J. Song, R. H. Zhu, and H. C. Gu, “Toughening of titanium alloys by twinning and martensite transformation,” J. Mater. Sci., 37, 2543 – 2547 (2002).

    Article  Google Scholar 

  11. T. Grosdidier, Y. Combress, E. Gautier, and M. J. Philippe, “Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy,” Metall. Mater. Trans., 31A, 1095 – 1106 (2000).

    Article  Google Scholar 

  12. L. Zhang, T. Zhou, M. Aindow, et al., “Nucleation of stress-induced martensites in a Ti_Mo-based alloy,” J. Mater. Sci., 40, 2833 – 2836 (2005).

    Article  Google Scholar 

  13. A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Effect of volume fraction of primary _2 on the trigger stress for stress-induced martensitic transformation in two-phase Ti – Al – Nb alloys,” Metall. Mater. Trans. A, 39A, 2086 – 2094 (2008).

    Article  Google Scholar 

  14. A. Paradkar, S. V. Kamat, A. K. Gogia, and B. P. Kashyap, “Trigger stress for stress-induced martensitic transformation during tensile deformation in Ti – Al – Nb alloys: Effect of grain size,” Metall. Mater. Trans. A, 39A, 551 – 558 (2008).

    Article  Google Scholar 

  15. B. Appolaire, L. Héricher, and E. Gautier, “Modeling of phase transformation kinetics in Ti alloys – Isothermal treatments,” Acta Mater., 53, 3001 – 3011 (2005).

    Article  Google Scholar 

  16. H. Ohyama and T. Nishimura, “Effects of alloying elements on deformation mode in Ti – V based titanium alloy system,” ISIJ Int., 31, 927 – 936 (1991).

    Article  Google Scholar 

  17. G. Lütering and J. C. Williams, Titanium, Ch. 7, “Beta Alloys,” 2nd Ed., Springer, Berlin (2007), pp. 283 – 337.

  18. M. Gonzalez, J. Pana, J. M. Manero, et al., “Optimization of the Ti – 16.2Hf – 24.8Nb – 1Zr alloy by cold working,” J. Mater. Eng. Perform., 18, 506 – 510 (2009).

    Article  Google Scholar 

  19. F. J. Gil and J. M. Guilemany, “Energetic evaluation for inducing the thermoelastic martensitic transformation by mechanical stress in Cu – Zn – Al single crystals,” Intermetallics, 7, 699 – 704 (1999).

    Article  Google Scholar 

  20. F. X. Gil, J. M. Manero, and J. A. Planell, “Relevant aspects in the clinical applications of NiTi shape memory alloys,” J. Mater. Sci., 7, 403 – 406 (1996).

    Google Scholar 

  21. W. Bong, Z. Liu, Y. Gao, et al., “Microstructural evolution during aging of Ti – 10V – 2Fe – 3Al titanium alloy,” J. Univ. Sci. Technol. Beijing, 14, 335 – 340 (2007).

    Article  Google Scholar 

  22. J. Talonen, P. Nenonen, G. Pape, and H. Hanninen, “Effect of stain rate on the strain-induced γ → α′ martensitic transformation and mechanical properties of austenitic stainless steels,” Metall. Mater. Trans. A, 36, 421 – 432 (2005).

    Article  Google Scholar 

  23. A. Paradkar and S. V. Kamat, “The effect of strain rate on trigger stress for stress-induced martensitic transformation and yield strength in Ti – 18Al – 8Nb alloy,” J. Alloys Compd., 496, 178 – 182 (2010).

    Article  Google Scholar 

  24. Y. Liu and H. Yang, “The concern of elasticity in stress-induced martensitic transformation in NiTi,” Mater. Sci. Eng. A, 260, 240 – 245 (1999).

    Article  Google Scholar 

  25. A. Bhattacharjee, S. Bhargava, V. K. Varma, et al., “Effect of β grain size on stress induced martensitic transformation in β solution treated Ti – 10V – 2Fe – 3Al alloy,” Scr. Mater., 53, 195 – 200 (2005).

    Article  Google Scholar 

  26. G. B. Olson and M. Cohen, “Interphase-boundary dislocations and the concept of coherency,” Acta Metall., 27, 1907 – 1918 (1979).

    Article  Google Scholar 

  27. S. Nemat-Nasser, J. Y. Choi, W. G. Guo, J. B. Isaaca, “Very high strain-rate response of a NiTi shape-memory alloy,” Mech. Mater., 37, 287 – 298 (2005).

    Article  Google Scholar 

  28. M. Grujicic, G. B. Olson, and W. S. Owen, “Kinetics of martensitic interface motion,” J. Phys., C4, 173 – 178 (1982).

    Google Scholar 

  29. M. Grujicic, G. B. Olson, and W. S. Owen, “Mobility of martensitic interfaces,” Metall. Mater. Trans. A, 15, 1713 – 1722 (1985).

    Article  Google Scholar 

  30. S. N. Nasser and J. Y. Choi, “Strain rate dependence of deformation mechanisms in a Ni – Ti – Cr shape-memory alloy,” Acta Mater., 53, 449 – 454 (2005).

    Article  Google Scholar 

Download references

The project has been supported by the National Natural Science Foundation of China (Grants 51405037, 51205030), the Natural Science Foundation of the Hunan Province (2015JJ6002), and the Open Research Fund of the Innovation Platform of Efficient and Clean Utilization of Energy (14K004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Li.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 42 – 47, November, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, W., Chen, J. et al. Investigation of Triggering Stress for Martensitic Transformation in Titanium Alloy. Met Sci Heat Treat 59, 715–720 (2018). https://doi.org/10.1007/s11041-018-0216-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0216-3

Key words

Navigation