The Kinetics of Cooling of Sheet Parts from Aluminum Alloys Under Low-Deformation Quenching in a Polymer Medium

  • A. L. Ivanov
  • O. G. Senatorova
  • M. M. Mitasov
  • V. V. Antipov
  • M. E. Straupenek
  • N. Yu. Tormysheva
Article
  • 3 Downloads

The kinetics of cooling of sheet preforms from aluminum alloys in a quenching medium with polymer additions is analyzed. Reduction of warpage and residual stresses under quenching is a usual problem in the production of parts and semiproducts. It is shown that in the world practice this problem is solved for sheet and complex-configuration parts from aluminum alloys by quenching cooling in aqueous solutions with polymer additions (low-deformation quenching), which change the kinetics and the mechanism of the cooling.

Key words

low-deformation quenching polymer medium rate and kinetics of cooling warpage water properties alloy 

Notes

The work has been performed within implementation of a complex scientific direction 10.10 “Energy-Efficient, Resource-Saving and Additive Technologies of Fabrication of Deformable Semiproducts and Shaped Castings from Magnesium and Aluminum Alloys” (“Strategic Directions of Development of Materials and Technologies of their Processing for the Period of up to 2030”).

References

  1. 1.
    E. N. Kablov, “Innovation developments of FGUP “VIAM” GNTs RF in implementation of “Strategic directions of development of materials and technologies of their processing for the period of up to 2020,” Aviats. Mater. Tekhnol., No. 1, 3 – 33 (2015).Google Scholar
  2. 2.
    I. N. Fridlyander, E. N. Kablov, O. G. Senatorova, et al. (eds.), Nonferrous Metals and Alloys. Composite Materials. Encyclopedia [in Russian], Mashinostroenie, Moscow (2001), 879 p.Google Scholar
  3. 3.
    V. V. Antipov, “Strategy of development of titanium, magnesium, beryllium and aluminum alloys,” Aviats. Mater. Tekhnol., No. S, 226 – 230 (2012).Google Scholar
  4. 4.
    E. N. Kablov, “Strategic directions of development of materials and technologies of their processing in the period of up to 2030,” Aviats. Mater. Tekhnol., No. 5, 7 – 17 (2012).Google Scholar
  5. 5.
    E. N. Kablov, “Control of the quality of materials — guarantee of safe operation of aircraft equipment,” Aviats. Mater. Tekhnol., No. 1, 3 – 8 (2001).Google Scholar
  6. 6.
    V. V. Antipov, O. P. Senatorova, E. A. Tkachenko, and R. O. Vakhromov, “Aluminum deformable alloys,” Aviats. Mater. Tekhnol., No. 5, 167 – 182 (2012).Google Scholar
  7. 7.
    Ch. E. Bates and J. E. Totten, “A method for choosing quenchants for aluminum parts,” Promysh. Teplotekh., 11(6), 86 – 100 (1989).Google Scholar
  8. 8.
    A. V. Sverdlin, G. E. Totten, and G. M.Webster, “Application of quenching factor for predicting the properties of polymer quenching media,” Metalloved. Term. Obrab. Met., No. 6, 14 – 17 (1996).Google Scholar
  9. 9.
    Ch. E. Bates, “Cooling curve and quench factor characterization of 2024 and 7075 aluminum bar stock quenched in type I polymer quenchants,” Promysh. Teplotekh., 19(2 – 3), 59 – 65 (1997).Google Scholar
  10. 10.
    G. E. Totten, G. M. Webster, and Ch. E. Bates, Quenching. Handbook of Aluminum (2003), Vol. 1, pp. 971 – 1062.Google Scholar
  11. 11.
    G. E. Totten and D. S. Mackenzie, Aluminum Quenching Technology, Proc. ICAA6, USA (2000), pp. 589 – 595.Google Scholar
  12. 12.
    AMS 3025, Polyalkylene Glycol Heat Treat Quenchant (2009), 9 p.Google Scholar
  13. 13.
    AMS 2770H. Heat Treatment of Wrought Aluminum Alloy Parts (2006), pp. 5 – 7, 12, 15.Google Scholar
  14. 14.
    E. M. Bolotova, S. L. Tsukrov, and K. T. Isyakaev, “Quenching of pressings from alloy 7050 with cooling in a water-polymer medium,” Tsvetn. Met., No. 4, 75 – 77 (2009).Google Scholar
  15. 15.
    O. G. Senatorova, I. F. Mikhailova, A. L. Ivanov, et al., “Low-deformation quenching of aluminum alloys in polymer media,” Metalloved. Term. Obrab. Met., No. 11, 33 – 36 (2015).Google Scholar
  16. 16.
    I. F. Mikhailova, L. A. Tikhonova, and N. V. Bukhatkina, Quenchant, RF Patent No. 817074 [in Russian], Moscow (1980).Google Scholar
  17. 17.
    V. A. Koptyug, I. F. Mikhailova, and A. S. Bedarev, Quenchant, RF Patent No. 1708878 [in Russian], Moscow (1992).Google Scholar
  18. 18.
    I. F. Mikhailova, L. A. Tikhonova, and N. V. Bukhatkina, Research of Quenching Media for Aluminum Alloys Based on Aqueous Solutions of Polymers, Preprint [in Russian], NIOKh SO AN SSSR, Novosibirsk (1980), 26 p.Google Scholar
  19. 19.
    V. A. Koptyug, I. N. Fridlyander, and I. F. Mikhailova, A Study of the Properties of Aluminum Alloys after Quenching in an Aqueous Solution of Alkylphenol and High-Temperature Polyethylene Oxide, Preprint [in Russian], NIOKh SO AN SSSR, Novosibirsk (1983), 27 p.Google Scholar
  20. 20.
    V. A. Koptyug, I. N. Fridlyander, and O. G. Senatorova, “Cooling media with polymer additions for low-deformation quenching of aluminum alloys,” in: The Physical Metallurgy of Aluminum Alloys [in Russian], Nauka, Moscow (1985), pp. 55 – 60.Google Scholar
  21. 21.
    O. G. Senatorova, V. V. Sidelnikov, and I. F. Mikhailova, “Low distortion quenching of aluminum alloys in polymer medium,” in: Mater. Sci. Forum (ICAA 10) (2002), pp. 1659 – 1664.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. L. Ivanov
    • 1
  • O. G. Senatorova
    • 1
  • M. M. Mitasov
    • 2
  • V. V. Antipov
    • 1
  • M. E. Straupenek
    • 3
  • N. Yu. Tormysheva
    • 2
  1. 1.Federal State Unitary Enterprise “VIAM,” RF State Research CenterMoscowRussia
  2. 2.Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences (NIOKh SO RAN)NovosibirskRussia
  3. 3.V. P. Chkalov Novosibirsk Aircraft Works, Affiliate of the “Sukhoy Company,” (V. P. Chkalov NAZ)NovosibirskRussia

Personalised recommendations