Metal Science and Heat Treatment

, Volume 59, Issue 9–10, pp 630–636 | Cite as

Structure and Wear Resistance of Nitrocarburized Medium-Carbon Steels

  • I. L. Yakovleva
  • N. A. Tereshchenko
  • A. V. Stepanchukova
  • E. Yu. Priymak
  • Yu. A. Chirkov

The methods of optical and scanning electron microscopy are used to study the structure and phase composition of nitrocarburized layer in medium-carbon steels alloyed with manganese, chromium and nickel. Transmission electron microscopy is applied to study the structure of the heterophase zone and to determine its phase composition. The wear resistance and the wear mechanism of steels of different alloying systems are determined.

Key words

medium-carbon steels nitrocarburizing structure phase composition nitrocarburized layer heterophase zone wear resistance wear surface 


The work has been performed within State Assignment No. 01201463331 on the topic “Structure” and with support of the “Foundation for Promoting the Development of Small Enterprises in the Sphere of Science and Engineering” (“Foundation for Promotion of Innovations”) within the Competition Program “UMNIK-2016”).


  1. 1.
    D. A. Prokoshkin, Thermochemical Treatment of Metals: Nitrocarburizing [in Russian], Metallurgiya, Mashinostroenie, Moscow (1984), 240 p.Google Scholar
  2. 2.
    Yu. M. Lakhtin and B. N. Arzamasov, Thermochemical Treatment of Metals [in Russian], Metallurgiya, Moscow (1985), 256 p.Google Scholar
  3. 3.
    M. A. Smirnov, V. M. Schastlivtsev, and L. G. Zhuravlev, Fundamentals of the Heat Treatment of Steel [in Russian], Nauka i Tekhnologiya, Moscow (2002), 519 p.Google Scholar
  4. 4.
    R. Chatterjee-Fischer, F. V. Eisell, R. Hoffmann, et al., Nitriding and Nitrocarburizing [Russian translation], Metallurgiya, Moscow (1990), 280 p.Google Scholar
  5. 5.
    S. A. Nikulin, S. O. Rogachev, V. M. Khatkevich, and A. B. Rozhkov, “Structure and hardness of corrosion-resistant ferritic steels after high-temperature nitriding,” Fiz. Met. Metalloved., 115(2), 198 – 203 (2014).Google Scholar
  6. 6.
    S. G. Tsikh, V. I. Grishin, and V. N. Lisitskii, “Experience of application of nitrocarburizing of steel parts and tools in machine building,” Vest. MGTU Im. G. I. Nosova, No. 4, 32 – 38 (2008).Google Scholar
  7. 7.
    S. G. Tsikh, V. I. Grishin, A. V. Supov, et al., “Advancement of the process of nitrocarburizing,” Metalloved. Term. Obrab. Met., No. 9, 7 – 12 (2010).Google Scholar
  8. 8.
    L. Bellas, G. Catro, L. Mera, et al., “Effect of QPQ salt bath nitrocarburizing on the microstructure and performance of stainless steel 321,” Metalloved. Term. Obrab. Met., No. 6, 58 – 65 (2016).Google Scholar
  9. 9.
    E. Yu. Priymak, A. V. Stepanchukova, I. L. Yakovleva, and N. A. Tereshchenko, “Effect of nitrocarburizing on the susceptibility of medium-carbon alloy steels to temper brittleness,” Metalloved. Term. Obrab. Met., No. 4, 48 – 54 (2017).Google Scholar
  10. 10.
    A. V. Stepanchukova, “Effective surface hardening of drilling equipment parts by the method of nitrocarburizing,” Nauka Proizvod. Urala, No. 9, 52 – 57 (2013).Google Scholar
  11. 11.
    E. Yu. Priymak, A. V. Stepanchukova, I. L. Yakovleva, and N. A. Tereshchenko, “Use of nitrocarburizing for reinforcing threaded joints of drill pipes from medium-carbon alloy steels,” Metalloved. Term. Obrab. Met., No. 2, 38 – 44 (20 – 15).Google Scholar
  12. 12.
    V. I. Semin, “Surface hardening of lock tread by nitrocarburizing,” Netf. Khoz., No. 12, 104 – 106 (2004).Google Scholar
  13. 13.
    H. J. Goldschmidt, Interstitial Alloys [Russian translation], Mir, Moscow (1971), 423 p.Google Scholar
  14. 14.
    A. A. Galushkin, “Threaded joint of thin-wall drill pipes, RF Patent 78854, MPK E21B 17_042, F16L, 15_00, Appl. Patentee “Drilling Equipment Plant, No. 207145728,” Byull. Izobr. Polezn. Modeli, No. 34, 3 (2008), appl. 11.03.08, publ. 10.12.08.Google Scholar
  15. 15.
    B. M. Mogutnov, I. A. Tomilin, and L. A. Shvartsman, The Thermodynamics of Iron-Carbon Alloys [in Russian], Metallurgiya, Moscow (1972), 328 p.Google Scholar
  16. 16.
    M. A. Krishtal, Diffusion Mechanism in Iron Alloys [in Russian], Metallurgiya, Moscow (1972), 400 p.Google Scholar
  17. 17.
    L. M. Utevskii, Diffraction Electron Microscopy in the Science of Metals [in Russian], Metallurgiya, Moscow (1973), 584 p.Google Scholar
  18. 18.
    A. G. Rakhshtadt (ed.), The Physical Metallurgy and Heat Treatment of Steel and Cast Iron [in Russian], Intermet Engineering, Moscow (2004), Vol. 1, 678 p.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. L. Yakovleva
    • 1
  • N. A. Tereshchenko
    • 1
  • A. V. Stepanchukova
    • 2
  • E. Yu. Priymak
    • 3
  • Yu. A. Chirkov
    • 4
  1. 1.M. N. Mikheev Institute of Metals Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Drilling Equipment PlantOrenburgRussia
  3. 3.Orsk Liberal-Technological Institute (Branch of the Orenburg State University)OrskRussia
  4. 4.Orenburg State UniversityOrenburgRussia

Personalised recommendations