Skip to main content
Log in

A Study of Redistribution of Silicon in Dual-Phase Silicon Steels

  • Published:
Metal Science and Heat Treatment Aims and scope

Dual-phase steels containing 0.34 – 2.26 wt.% Si are studied after quenching from the intercritical temperature range. The critical temperatures Ac1 and Ac3 of the steels are determined. The effect of silicon and of the time of holding at 740 – 810°C on the volume fraction of austenite and on the coefficient of silicon distribution between austenite and ferrite is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. G. R. Speich, V. A. Demarest, and R. L. Miller, “Formation of austenite during intercritical annealing of dual-phase steels,” Metall. Trans. A, 12, 1419 (1981).

    Article  Google Scholar 

  2. M. S. Rashid and B. V. N. Rao, “Tempering characteristics of a vanadium containing dual-phase steel,” Metall. Trans. A, 13, 1679 (1982).

    Article  Google Scholar 

  3. S. Kumar and S. K. Nath, “Development of dual-phase steels from plain carbon sheet steels,” Z. Metallkd., 89, 779 (1998).

    Google Scholar 

  4. U. Liedl, S. Traint, and E. A.Werner, “An unexpected feature of the stress-strain diagram of dual-phase steel,” Comp. Mater. Sci., 25, 122 (2002).

    Article  Google Scholar 

  5. T. G. Thiessen, J. Sietsma, T. A. Palmer, et al., “Phase-field modeling and synchrotron validation of phase transformations in martensitic dual-phase steel,” Acta Mater., 55, 601 (2007).

    Article  Google Scholar 

  6. M. Asadi, B. C. De Comman, and H. Palkowski, “Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel,” Mater. Sci. Eng., A538, 42 (2012).

    Article  Google Scholar 

  7. R. H. Hoel, “Metallography and partitioning of alloying elements in dual-phase steels,” Metallography, 17, 273 (1984).

    Article  Google Scholar 

  8. S. S. G. Bandkouki and E. Fereiduni, “Effect of prior austenite carbon partitioning on martensite hardening variation in a low alloy ferrite-martensite dual phase steel,” Mater. Sci. Eng., A619, 129 (2014).

    Article  Google Scholar 

  9. H. K. Khaira, A. K. Jena, and M. C. Chaturvedi, “Effects of heat treatment cycle on equilibrium between ferrite and austenite during intercritical annealing,” Mater. Sci. Eng., A161, 267 (1993).

    Article  Google Scholar 

  10. J. Lis, J. Morgiel, and A. Lis, “The effect of Mn partitioning in Fe – Mn – Si alloy investigated with STEM-EDS techniques,” Mater. Chem. Phys., 81, 466 (2003).

    Article  Google Scholar 

  11. P. M. N. Ocancey and D. R. Pourier, “Equilibrium partition ratios of C, Mn and Si in high carbon steel,” Mater. Sci. Eng., A211, 10 (1996).

    Article  Google Scholar 

  12. G. E. Totten, Steel Heat Treatment, Hand Book, Taylor and Francis Group, CRC Press (2007).

  13. M. Erdogan, “Effect of austenite dispersion on phase transformation in dual-phase steels,” Scr. Mater., 48, 501 (2003).

    Article  Google Scholar 

  14. M. Chaturvedi and A. K. Jena, “Effect of intercritical annealing temperature on equilibrium between ferrite and austenite,” Mater. Sci. Eng., 94, L1 (1987).

    Article  Google Scholar 

  15. D. K. Mondal and R. K. Ray, “Effect of chemical composition and initial heat treatment on the structure and properties of a few dual-phase steels,” Steel Res., 60, 25 (1989).

    Article  Google Scholar 

  16. G. Thomas and J. Y. Koo, “Developments in strong,” in: R. A. Kot and J. W. Morris (eds.), Ductile Duplex Ferritic-Martensitic Steels. Structure and Properties of Dual Phase Steel, TMS-AIME, New York (1979), p. 183.

  17. J. H. Park, Y. Tomota, and M. Y. Wey, “Suppression of grain growth in dual-phase steel,” Mater. Sci. Tech., 18, 1517 (2001).

    Article  Google Scholar 

  18. J. Y. Koo and G. Thomas, “Metallurgical factors controlling impact properties of two phase steels,” Scr. Metall., 13, 1141 (1979).

    Article  Google Scholar 

  19. A. D. Romig and R. Salzbrener, “Elemental partitioning as a function of heat treatment in an Fe – Si – V – C dual phase steel,” Scr. Metall., 16, 33 (1982).

    Article  Google Scholar 

  20. W. C. Leslie and G. C. Rauch, “Precipitation of carbides in low-carbon Fe – Al – C alloys,” Metall. Trans. A, 9, 343 (1978).

    Article  Google Scholar 

  21. H. C. Chen, H. Era, and M. Shimizu, “Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet,” Metall. Trans. A, 20, 347 (1989).

    Google Scholar 

  22. M. H. Saleh and R. Priestner, “Retained austenite in dual-phase silicon steels and its effect on mechanical properties,” J. Mater. Proc. Tech., 113, 587 (2001).

    Article  Google Scholar 

  23. O. Matsumura, Y. Sakuma, and H. Takechi, “Retained austenite in 0.4 C – Si – 1.2 Mn steel sheet intercritically heated and austempered,” ISIJ Int., 32, 1014 (1992).

    Article  Google Scholar 

  24. R. Priestner and M. Ajmal, “Effect of carbon content and microalloying on martensitic hardenability of austenite of dual-phase steels,” Mater. Sci. Tech., 3, 360 (1987).

    Article  Google Scholar 

  25. C. I. Garcia and A. J. DeArdo, “Formation of austenite in low alloy steels,” Metall. Trans. A, 12, 521 (1981).

    Article  Google Scholar 

  26. A. Murugaiyan, A. S. Podder, A. Pandit, et al., “Phase transformation in two C – Mn – Si – Cr dual phase steels,” ISIJ Int., 46, 1489 (2006).

    Article  Google Scholar 

  27. J. Y. Koo, M. Raghavan, and G. Thomas, “Compositional analysis of dual phase steels by transmission electron microscopy,” Metall. Trans. A, 11, 351 (1980).

    Article  Google Scholar 

  28. A. Nouri, H. Saghafian, and S. Kheirandish, “The effects of silicon content and intercritical annealing on the manganese partitioning in the dual-phase steels,” J. Iron Steel Res. Int., 17, 44 (2010).

    Article  Google Scholar 

  29. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, UK (1992).

    Book  Google Scholar 

  30. A. Garcia-Junceda, F. G. Caballero, C. Capdevila, and C. Garcia de Andres, “Determination of local carbon content in austenite during intercritical annealing of dual phase steels by peels analysis,” Scr. Mater., 57, 89 (2007).

    Article  Google Scholar 

  31. S. Sun and M. Pugh, “Manganese partitioning in dual-phase steel during annealing,” Mater. Sci. Eng., A276, 167 (2000).

    Article  Google Scholar 

  32. B. Ghosh and O. N. Mohanty, “Partitioning of micro-additions in dual phase steels and structure property correlation,” Trans. Indian Inst. Metall., 49, 143 (1996).

    Google Scholar 

  33. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Publ. Co, Boston (1994).

  34. R. G. Davies, “On the ductility of dual-phase steels,” in: R. A. Kot and J.W. Morris (eds.), Formable HSLS and Dual-Phase Steels, TMS-AIME (1997), p. 671.

  35. W. C. Leslie, The Physical Metallurgy of Steel, McGraw-Hill (1991).

  36. W. Seith, Diffusion in Metallen, Springer-Verlag, Berlin (1955).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 27 – 32, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, A., Kheirandish, S. & Saghafian, H. A Study of Redistribution of Silicon in Dual-Phase Silicon Steels. Met Sci Heat Treat 59, 569–574 (2018). https://doi.org/10.1007/s11041-018-0191-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0191-8

Key words

Navigation