Metal Science and Heat Treatment

, Volume 59, Issue 9–10, pp 569–574 | Cite as

A Study of Redistribution of Silicon in Dual-Phase Silicon Steels

  • Ashkan Nouri
  • Shahram Kheirandish
  • Hassan Saghafian

Dual-phase steels containing 0.34 – 2.26 wt.% Si are studied after quenching from the intercritical temperature range. The critical temperatures Ac1 and Ac3 of the steels are determined. The effect of silicon and of the time of holding at 740 – 810°C on the volume fraction of austenite and on the coefficient of silicon distribution between austenite and ferrite is considered.

Key words

dual-phase steels silicon steels energy dispersive analysis energy dispersive spectroscopy redistribution of elements 


  1. 1.
    G. R. Speich, V. A. Demarest, and R. L. Miller, “Formation of austenite during intercritical annealing of dual-phase steels,” Metall. Trans. A, 12, 1419 (1981).CrossRefGoogle Scholar
  2. 2.
    M. S. Rashid and B. V. N. Rao, “Tempering characteristics of a vanadium containing dual-phase steel,” Metall. Trans. A, 13, 1679 (1982).CrossRefGoogle Scholar
  3. 3.
    S. Kumar and S. K. Nath, “Development of dual-phase steels from plain carbon sheet steels,” Z. Metallkd., 89, 779 (1998).Google Scholar
  4. 4.
    U. Liedl, S. Traint, and E. A.Werner, “An unexpected feature of the stress-strain diagram of dual-phase steel,” Comp. Mater. Sci., 25, 122 (2002).CrossRefGoogle Scholar
  5. 5.
    T. G. Thiessen, J. Sietsma, T. A. Palmer, et al., “Phase-field modeling and synchrotron validation of phase transformations in martensitic dual-phase steel,” Acta Mater., 55, 601 (2007).CrossRefGoogle Scholar
  6. 6.
    M. Asadi, B. C. De Comman, and H. Palkowski, “Influence of martensite volume fraction and cooling rate on the properties of thermomechanically processed dual phase steel,” Mater. Sci. Eng., A538, 42 (2012).CrossRefGoogle Scholar
  7. 7.
    R. H. Hoel, “Metallography and partitioning of alloying elements in dual-phase steels,” Metallography, 17, 273 (1984).CrossRefGoogle Scholar
  8. 8.
    S. S. G. Bandkouki and E. Fereiduni, “Effect of prior austenite carbon partitioning on martensite hardening variation in a low alloy ferrite-martensite dual phase steel,” Mater. Sci. Eng., A619, 129 (2014).CrossRefGoogle Scholar
  9. 9.
    H. K. Khaira, A. K. Jena, and M. C. Chaturvedi, “Effects of heat treatment cycle on equilibrium between ferrite and austenite during intercritical annealing,” Mater. Sci. Eng., A161, 267 (1993).CrossRefGoogle Scholar
  10. 10.
    J. Lis, J. Morgiel, and A. Lis, “The effect of Mn partitioning in Fe – Mn – Si alloy investigated with STEM-EDS techniques,” Mater. Chem. Phys., 81, 466 (2003).CrossRefGoogle Scholar
  11. 11.
    P. M. N. Ocancey and D. R. Pourier, “Equilibrium partition ratios of C, Mn and Si in high carbon steel,” Mater. Sci. Eng., A211, 10 (1996).CrossRefGoogle Scholar
  12. 12.
    G. E. Totten, Steel Heat Treatment, Hand Book, Taylor and Francis Group, CRC Press (2007).Google Scholar
  13. 13.
    M. Erdogan, “Effect of austenite dispersion on phase transformation in dual-phase steels,” Scr. Mater., 48, 501 (2003).CrossRefGoogle Scholar
  14. 14.
    M. Chaturvedi and A. K. Jena, “Effect of intercritical annealing temperature on equilibrium between ferrite and austenite,” Mater. Sci. Eng., 94, L1 (1987).CrossRefGoogle Scholar
  15. 15.
    D. K. Mondal and R. K. Ray, “Effect of chemical composition and initial heat treatment on the structure and properties of a few dual-phase steels,” Steel Res., 60, 25 (1989).CrossRefGoogle Scholar
  16. 16.
    G. Thomas and J. Y. Koo, “Developments in strong,” in: R. A. Kot and J. W. Morris (eds.), Ductile Duplex Ferritic-Martensitic Steels. Structure and Properties of Dual Phase Steel, TMS-AIME, New York (1979), p. 183.Google Scholar
  17. 17.
    J. H. Park, Y. Tomota, and M. Y. Wey, “Suppression of grain growth in dual-phase steel,” Mater. Sci. Tech., 18, 1517 (2001).CrossRefGoogle Scholar
  18. 18.
    J. Y. Koo and G. Thomas, “Metallurgical factors controlling impact properties of two phase steels,” Scr. Metall., 13, 1141 (1979).CrossRefGoogle Scholar
  19. 19.
    A. D. Romig and R. Salzbrener, “Elemental partitioning as a function of heat treatment in an Fe – Si – V – C dual phase steel,” Scr. Metall., 16, 33 (1982).CrossRefGoogle Scholar
  20. 20.
    W. C. Leslie and G. C. Rauch, “Precipitation of carbides in low-carbon Fe – Al – C alloys,” Metall. Trans. A, 9, 343 (1978).CrossRefGoogle Scholar
  21. 21.
    H. C. Chen, H. Era, and M. Shimizu, “Effect of phosphorus on the formation of retained austenite and mechanical properties in Si-containing low-carbon steel sheet,” Metall. Trans. A, 20, 347 (1989).Google Scholar
  22. 22.
    M. H. Saleh and R. Priestner, “Retained austenite in dual-phase silicon steels and its effect on mechanical properties,” J. Mater. Proc. Tech., 113, 587 (2001).CrossRefGoogle Scholar
  23. 23.
    O. Matsumura, Y. Sakuma, and H. Takechi, “Retained austenite in 0.4 C – Si – 1.2 Mn steel sheet intercritically heated and austempered,” ISIJ Int., 32, 1014 (1992).CrossRefGoogle Scholar
  24. 24.
    R. Priestner and M. Ajmal, “Effect of carbon content and microalloying on martensitic hardenability of austenite of dual-phase steels,” Mater. Sci. Tech., 3, 360 (1987).CrossRefGoogle Scholar
  25. 25.
    C. I. Garcia and A. J. DeArdo, “Formation of austenite in low alloy steels,” Metall. Trans. A, 12, 521 (1981).CrossRefGoogle Scholar
  26. 26.
    A. Murugaiyan, A. S. Podder, A. Pandit, et al., “Phase transformation in two C – Mn – Si – Cr dual phase steels,” ISIJ Int., 46, 1489 (2006).CrossRefGoogle Scholar
  27. 27.
    J. Y. Koo, M. Raghavan, and G. Thomas, “Compositional analysis of dual phase steels by transmission electron microscopy,” Metall. Trans. A, 11, 351 (1980).CrossRefGoogle Scholar
  28. 28.
    A. Nouri, H. Saghafian, and S. Kheirandish, “The effects of silicon content and intercritical annealing on the manganese partitioning in the dual-phase steels,” J. Iron Steel Res. Int., 17, 44 (2010).CrossRefGoogle Scholar
  29. 29.
    D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, UK (1992).CrossRefGoogle Scholar
  30. 30.
    A. Garcia-Junceda, F. G. Caballero, C. Capdevila, and C. Garcia de Andres, “Determination of local carbon content in austenite during intercritical annealing of dual phase steels by peels analysis,” Scr. Mater., 57, 89 (2007).CrossRefGoogle Scholar
  31. 31.
    S. Sun and M. Pugh, “Manganese partitioning in dual-phase steel during annealing,” Mater. Sci. Eng., A276, 167 (2000).CrossRefGoogle Scholar
  32. 32.
    B. Ghosh and O. N. Mohanty, “Partitioning of micro-additions in dual phase steels and structure property correlation,” Trans. Indian Inst. Metall., 49, 143 (1996).Google Scholar
  33. 33.
    R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Publ. Co, Boston (1994).Google Scholar
  34. 34.
    R. G. Davies, “On the ductility of dual-phase steels,” in: R. A. Kot and J.W. Morris (eds.), Formable HSLS and Dual-Phase Steels, TMS-AIME (1997), p. 671.Google Scholar
  35. 35.
    W. C. Leslie, The Physical Metallurgy of Steel, McGraw-Hill (1991).Google Scholar
  36. 36.
    W. Seith, Diffusion in Metallen, Springer-Verlag, Berlin (1955).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashkan Nouri
    • 1
  • Shahram Kheirandish
    • 2
  • Hassan Saghafian
    • 2
  1. 1.Department of Metallurgy and Materials Engineering, Faculty of EngineeringArak UniversityArakIran
  2. 2.Department of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations