Metal Science and Heat Treatment

, Volume 59, Issue 9–10, pp 564–568 | Cite as

Effect of Tungsten on the Temper Brittleness in Steels with 9% Cr

  • A. E. Fedoseeva
  • N. R. Dudova
  • R. O. Kaibyshev

The impact toughness and the structure of high-chromium martensitic steels with different tungsten contents are studied after tempering at 300 – 800°C. It is shown that when the tungsten content is increased from 2 to 3%, the temperature range of the irreversible temper embrittlement is widened and the impact toughness is decreased by a factor of 4.

Key words

martensitic steel impact toughness M23C6 carbides segregations over boundaries 


The study has been performed within a grant of the Russian Scientific Foundation (Project No. 14-29-00173).


  1. 1.
    GOST 4543–71. Rolled Stock from Alloy Structural Steel. Performance Specification. IPK [in Russian], Izd. Standartov, Moscow (1997), 66 p.Google Scholar
  2. 2.
    Yu. I. Ustinovshchikov and O. A. Bannykh, The Nature of Temper Brittleness of Steels [in Russian], Nauka, Moscow (1984), 239 p.Google Scholar
  3. 3.
    G. Krauss, “Deformation and fracture in martensitic carbon steels tempered at low temperatures,” Metall. Mater. Trans. A, 32, 861 – 877 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Sarikaya, A. K. Jhingan, and G. Thomas, “Retained austenite and tempered martensite embrittlement in medium carbon steels,” Metall. Mater. Trans. A, 14, 1121 – 1133 (1983).CrossRefGoogle Scholar
  5. 5.
    H. K. D. H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Butterworth-Heinemann, UK (2006), 357 p.Google Scholar
  6. 6.
    F. Abe, T. U. Kern, and R. Viswanathan, Creep Resistant Steels, Woodhead Publ. in Materials (2008), 678 p.Google Scholar
  7. 7.
    R. O. Kaybyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New martensitic steels for fossil power plant: Creep resistance,” Phys. Met. Metall., 109, 186 – 200 (2010).CrossRefGoogle Scholar
  8. 8.
    A. Yu. Kipelova, A. N. Belyakov, V. N. Skorobogatykh, et al., “Structural changes under tempering in steel 10Kh9K3V1M1FBR and their effect on mechanical properties,” Metalloved. Term. Obrab. Met., No. 3, 14 – 25 (2010).Google Scholar
  9. 9.
    K. A. Lanskaya, High-Chromium Refractory Steels [in Russian], Metallurgiya, Moscow (1976), 216 p.Google Scholar
  10. 10.
    GOST 5632–72. High-Alloy Steels and Corrosion-Resistant, High-Temperature and Refractory Alloys. Grades. IPK [in Russian], Izd. Standartov, Moscow (1997), 60 p.Google Scholar
  11. 11.
    N. Dudova, R. Mishnev, and R. Kaibyshev, “Effect of tempering on microstructure and mechanical property of boron containing 10% Cr steel,” ISIJ Int., 51, 1912 – 1918 (2011).CrossRefGoogle Scholar
  12. 12.
    Yu. I. Ustinovshchikov, “Causes of appearance of brittleness in the process of high tempering of chromium steels,” Fiz. Met. Metalloved., 44, 144 – 151 (1977).Google Scholar
  13. 13.
    M. A. Smirnov and V. I. Filatov, “High-temperature thermomechanical treatment of alloy structural and tool steels,” Metal. Sci. Heat Treat., 56(9 – 10), 470 – 476 (2015).Google Scholar
  14. 14.
    H. J. Sung, N. H. Heo, Y.-U. Heo, and S.-J. Kim, “The abnormal segregation behavior of solutes under tensile stress and its effect on carbide reactions in 2.25 Cr – 1.5 W heat-resistant steels,” Mater. Sci. Eng. A, 619, 146 – 151 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. E. Fedoseeva
    • 1
  • N. R. Dudova
    • 1
  • R. O. Kaibyshev
    • 1
  1. 1.Belgorod State National Research UniversityBelgorodRussia

Personalised recommendations