Advertisement

Metal Science and Heat Treatment

, Volume 58, Issue 9–10, pp 594–598 | Cite as

Domain Structure of R2Fe17 Intermetallic Compounds with Planar-Type Anisotropy

  • Yu. G. Pastushenkov
  • K. P. Skokov
  • M. B. Lyakhova
  • E. S. Antonova
Article

Magnetic domain structure is studied in single crystals of R2Fe17 (R = Tb, Dy, Ho, Er) intermetallic compounds in a wide range of temperatures (10 – 300 K) and magnetic fields (μ0 H = 0 – 0.1 T). It is shown that single crystal specimens of hexagonal magnetics with planar-type anisotropy acquire domain structures containing not only 180-degree domain boundaries but also 60- and 120-degree ones.

Key words

domain structure hexagonal magnetics planar-type magnetocrysalline anisotropy domain boundaries 

Notes

The work has been supported by Grant No. 1598 of the Ministry of Education and Science of the Russian Federation.

References

  1. 1.
    I. V. Kudrevatykh, Spontaneous Magnetization, Magnetocrystalline Anisotropy and Anisotropic Magnetostriction of Rare-Earth Compounds Based on Iron and Cobalt, Author’s Abstract of Doctoral’s Thesis [in Russian], Ekaterinburg (1994), 321 p.Google Scholar
  2. 2.
    K. Strnat, G. Hoffer, and F. E. Ray, “Magnetic properties of rare-earth-iron intermetallic compounds,” IEEE Trans. Magn., MAG2, 489 – 493 (1966).Google Scholar
  3. 3.
    S. F. Nikitin, I. A. Ovchinnikova, G. A. Tsukhadze, and K. P. Skakov, “Magnetic phase transitions and magnetocaloric effect in R2Fe17(R = Y, Tb, Er),” Solid State Phenom., 233 – 234, 204 – 207 (2015).CrossRefGoogle Scholar
  4. 4.
    R. Pfranger, D. Plusa, S. Szymura, and B. Wysllocki, “Domain structure and anisotropy constant in the compound Dy2Fe17,” J. Magn. Magn. Mater., 21, 43 – 46 (1980).CrossRefGoogle Scholar
  5. 5.
    Yu. G. Pastushenkov, K. P. Skokov, A. G. Khokholkov, et al., “Domain structure transformation and magnetic susceptibility of (Er, Ho)2Fe17 single crystal,” in: Moscow Int. Symp. on Magnetism (MISM), 20 – 25 June 2008, Moscow, Book of Abstracts [in Russian], Moscow (2008), p. 780.Google Scholar
  6. 6.
    K. P. Skokov, Yu. G. Pastushenkov, Yu. S. Kashkid’ko, et al., “Magnetocaloric effect, magnetic domain structure and spin-reorientation transitions in HoCo5 single crystals,” in: MISM, 20 – 25 June 2008, Moscow, Book of Abstracts [in Russian], Moscow (2008), p. 816.Google Scholar
  7. 7.
    Yu. G. Pastushenkov, A. Forkl, H. Kronmüller, “Temperature dependence of the domain structure in Fe14Nd2B single crystals during the spin-reorientation transition,” J. Magn. Magn. Mater., 174, 278 – 288 (1997).CrossRefGoogle Scholar
  8. 8.
    A. I. Mitsek, N. P. Kolmakova, and D. I. Sirota., “Magnetic phase diagrams and domain structures of ferromagnetic crystals with high-order symmetry axis,” Fiz. Met. Metalloved., 33, 35 – 47 (1974).Google Scholar
  9. 9.
    9. D. Goll, R. Loeffler, J. Herbst, R. Karimi, and G. Schneider, “High-throughput search for new permanent magnet materials,” J. Phys. Condens. Mat., 26(064208), 13 (2014).Google Scholar
  10. 10.
    A. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, Springer-Verlag, Berlin Heidelberg (1998), p. 696.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu. G. Pastushenkov
    • 1
  • K. P. Skokov
    • 1
    • 2
  • M. B. Lyakhova
    • 1
  • E. S. Antonova
    • 1
  1. 1.Tver State UniversityTverRussia
  2. 2.University of TechnologyDarmstadtGermany

Personalised recommendations