Metal Science and Heat Treatment

, Volume 58, Issue 1–2, pp 106–110 | Cite as

Possibility of Prediction of Properties of High-Toughness Materials by Complex Analysis of the Size of Zones of Plastic Strain and Other Parameters of Steel 09G2S

  • M. Yu. Simonov
  • G. S. Shaimanov
  • Yu. N. Simonov
  • A. M. Khanov

Relations between the parameters of dynamic crack resistance, impact toughness, sizes of zones of plastic strain in the start region, hardness of the unstrained material, strength characteristics, and tempering temperature of steel 09G2S are determined. The linear regression equations are used to construct mathematical and graphical models for predicting the level of properties in quenched and tempered steel 09G2S. The method is used to predict the properties of a tubular billet from steel 09G2S with composition somewhat different from the rated one after quenching and high tempering at 570°C.

Key words

dynamic crack resistance plastic strain zone systematic variation of microhardness prediction of properties 


The work has been performed with financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 02.G25.31.0068 of 23.05.13 within measures on implementation of Governmental Decree No. 218).


  1. 1.
    M. N. Georgiev, Yu. N. Simonov, and M. Yu. Simonov, “Effect of crack length and side notches on implementation of plane strain conditions under impact loading,” Zavod. Lab. Diagn. Mater., 76(9), 56 – 58 (2016).Google Scholar
  2. 2.
    M. N. Georgiev,M. Yu. Simonov, and Yu. N. Simonov, “Evaluation of fracture energy of impact specimens with side notches,” Zavod. Lab. Diagn. Mater., 78(9), 56 – 61 (2012).Google Scholar
  3. 3.
    G. V. Klevtsov, Plastic Zones and Diagnostics of Fracture of Metallic Materials [in Russian], MISiS, Moscow (1999), 112 p.Google Scholar
  4. 4.
    G. R. Irvin, “Analysis of stresses near a crack to the crack extension force,” J. Appl. Mech., 24(3), 361 – 363 (1957).Google Scholar
  5. 5.
    M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Estimation of the sizes of plastic strain zone of high-toughness materials after dynamic tests by the method of systematic measurement of microhardness,” Metalloved. Term. Obrab. Met., No. 11, 40 – 45 (2012).Google Scholar
  6. 6.
    G. V. Klevstov and G. B. Shvets, X-ray Analysis as a Method for Studying Fractures [in Russian], Mashinostroenie, Leningrad (1986), Issue 35, pp. 3 – 11.Google Scholar
  7. 7.
    E-Wen Huang, Soo Yeol Lee, Wanchuck Woo, and Kuan-Wei Lee, “Three-orthogonal-direction stress mapping around a fatigue-crack tip using neutron diffraction,” The Minerals, Metals & Mater. Soc. and ASM Int. (2011), DOI:  10.1007/s11661-011-0904-8.
  8. 8.
    Luke N. Brewer, David P. Field, and Colin C. Merriman, “Mapping and assessing plastic deformation using EBSD,” in: Electron Backscatter Diffraction in Mater. Sci. (2009), pp. 251 – 262; DOI:  10.1007/978-0-387-88136-2 18.
  9. 9.
    Helena Jin, Wei-Yang Lu, Sandip Haldar, and Hugh A. Bruck, “Microscale characterization of granular deformation near a crack tip,” J. Mater. Sci., 46(20), 6596 – 6602 (2011).CrossRefGoogle Scholar
  10. 10.
    G. O. Neil, The Hardness of Metals and Its Measurement [in Russian], Metallurgizdat, Moscow – Leningrad (1940), 376 p.Google Scholar
  11. 11.
    D. Tabor, The Hardness of Metals, Clarendon Press, London (1951), 171 p.Google Scholar
  12. 12.
    I. N. Tylevich, “Determination of mechanical properties of shipbuilding materials by indentation,” Proceeding of the Central Research Institute of Shipbuilding Technology [in Russian], Sudpromgiz, Leningrad (1959), XXIII, 94 p.Google Scholar
  13. 13.
    M. P. Markovets, “About the relation between hardness and other mechanical properties of metals,” in: Research in the Field of Hardness Measurement, Proceeding of USSR Institutes of Metrology [in Russian], Izd. Standartov, Moscow – Leningrad (1967), Issue 91(151), 76 p.Google Scholar
  14. 14.
    M. A. Baranov, V. M. Shcherbakov, E. V. Chernykh, and V. V. Romanenko, “Application of the method of discrete atomic modeling to prediction of mechanical properties of alloys of austenitic class,” Polzunovsky Almanakh, No. 1, 183 – 187 (2010).Google Scholar
  15. 15.
    M. A. Baranov and V. M. Shcherbakov, “Correlation of the mechanical properties of steels and austenitic alloys with the parameters of status variables of the crystal lattice,” Electr. Physicotekh. Zh., 5, 2 – 6 (2010).Google Scholar
  16. 16.
    Yu. I. Gustov, A. A. Pyatnitskii, and I. O. Makhov, “Identification of mechanical properties of building constructions, machines, and equipment,” in: Interstroymekh 2014, Mater. Int. Sci.-Eng. Conf. [in Russian], Samara (2014), pp. 203 – 207.Google Scholar
  17. 17.
    Yu. N. Simonov, M. Yu. Simonov, D. O. Panov, A. V. Kasatkin, and D. P. Poduzov, “A method for evaluating the impact toughness of high-toughness sheet structural steels, RF Patent 2485476, MPK G 01 n 3/30, Patentee Perm National Research Polytechnic University, No. 2012100595,” Byull. Izobr. Polezn. Modeli, No. 17 (2013), Appl. 10.01.2012, Publ. 20.06.2013.Google Scholar
  18. 18.
    Yu. N. Simonov, M. Yu. Simonov, G. S. Shaimanov, and L. E. Makarova, “A method for determining plastic strain zone under a fracture in a specimen, RF Patent 2516392, MPK G 01 n 3/28, Patentee Perm National Research Polytechnic University, No. 2012153101/28,” Byull. Izobr. Polezn. Modeli, No. 14 (2014), Appl. 07.12.2012, Publ. 20.05.2014.Google Scholar
  19. 19.
    M. N. Georgiev, Yu. N. Simonov, M. Ya. Mezhova, and V. N. Minaev, “Structural aspects of cyclic crack resistance of quenched and tempered steels,” Fiz. Khim. Mekhan. Mater., 21(5), 48 – 53 (1085).Google Scholar
  20. 20.
    Yu. N. Simonov, A. S. Pertsev, D. O. Panov, and A. I. Smirnov, “”Thermomechanical treatment of structural low-carbon steel 09G2S,” Sovr. Probl. Nauki Obraz., No. 6 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Yu. Simonov
    • 1
  • G. S. Shaimanov
    • 1
  • Yu. N. Simonov
    • 1
  • A. M. Khanov
    • 1
  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations