Skip to main content
Log in

Design of Bulk Metallic Glasses and Glass Matrix Composites Near Intermetallic Composition by the Principle of Competitive Growth

  • Published:
Metal Science and Heat Treatment Aims and scope

A Cu49Zr51 intermetallic is used as a base for synthesizing metallic glasses and composites with glass matrixes [(Cu49Zr51)100 – x Al x , where x = 0, 2, 4, 6, 8, 10 and 12 at.%]. The introduction of aluminum raises the microhardness and the ultimate compressive strength. In addition, the suppression of formation of crystalline phase upon the introduction of 8 at.% Al provides a glass-like structure in alloy (Cu49Zr51)92Al8. The formation of the glass-like structure is discussed within the concept of competitive nucleation of different intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here and below in the paper the content of aluminum is given in atomic percent.

References

  1. D. H. Xu, B. Lohwongwatana, and G. Duan, Acta Mater., 52, 262 (2004).

    Google Scholar 

  2. T. L. Cheung and C. H. Shek, J. Alloy Compd., 434 – 435, 71 (2007).

    Article  Google Scholar 

  3. A. Inoue, Acta Mater., 48, 279 (2000).

    Article  Google Scholar 

  4. A. Inoue, A. R. Yavari, and A. L. Greer, Philos. Mag. Lett., 85, 221 (2005).

    Article  Google Scholar 

  5. G. Q. Zhang, Q. K. Jiang, and J. Z. Jiang, J. Alloy Compd., 424, 176 (2006).

    Article  Google Scholar 

  6. J. Eckert, J. Das, and K. B. Kim, Intermetallics, 14, 1 (2006).

    Article  Google Scholar 

  7. W. H. Wang, J. J. Lewandowski, and A. L. Greer, J. Mater. Res., 20, 2307 (2005).

    Article  Google Scholar 

  8. P. Yu, H. Y. Bai, and M. B. Tang, Acta Phys. Sinica, 54(7), 3284 (2005).

    Google Scholar 

  9. T. A. Baser and M. Baricco, J. Alloy Compd., 18, 71 (2008).

    Google Scholar 

  10. H. D. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett., 92, 245504 (2004).

    Article  Google Scholar 

  11. A. Inoue, W. Zhang, and T. Zhang, Acta Mater., 49, 2645 (2001).

    Article  Google Scholar 

  12. A. Inoue, W. Zhang, and T. Zhang, Mater. Trans., 42, 1149 (2001).

    Article  Google Scholar 

  13. Q. L. Xing, P. Ochin, and J. Bigot, J. Non-Cryst. Solids, 205, 637 (1996).

    Article  Google Scholar 

  14. A. Inoue and W. Zhang, Mater. Trans. 43(11), 2921 (2002).

    Article  Google Scholar 

  15. D. Wang, H. Tan, and Y. Li, Acta Mater., 53, 2969 (2005).

    Article  Google Scholar 

  16. J. Das, M. B. Tang, and K. B. Kim, Phys. Rev. Lett., 94, 205501 (2005).

    Article  Google Scholar 

  17. D. S. Sung, O. J. Kwon, and E. Fleury, Mater. Trans., 47, 2606 (2006).

    Article  Google Scholar 

  18. P. Yu, H. Y. Bai, and M. B. Tang, J. Non-Cryst. Solids, 351, 1328 (2005).

    Article  Google Scholar 

  19. T. A. Baser, J. Das, and J. Eckert, J. Alloy Compd., 483, 146 (2009).

    Article  Google Scholar 

  20. Z. W. Zhu, H. F. Zhang, and W. S. Sun, Scr. Mater., 54, 1145 (2006).

    Article  Google Scholar 

  21. W. F. Wu and Y. Li, Appl. Phys. Lett., 95, 011906 (2009).

    Article  Google Scholar 

  22. Y. J. Sun, D. D. Qu, and J. J. Huang, Acta Mater., 57, 1290 (2009).

    Article  Google Scholar 

  23. A. L. Greer, Science, 267, 1947 (1995).

    Article  Google Scholar 

  24. Y. Li, S. J. Poon, and G. J. Shiflet, MRS Bull., 32, 624 (2007).

    Article  Google Scholar 

  25. Z. P. Lu and C. T. Liu, Phys. Rev. Lett., 91, 115505 (2003).

    Article  Google Scholar 

  26. Z. P. Lu, J. Shen, and D. W. Xing, Appl. Phys. Lett., 89, 071910 (2006).

    Article  Google Scholar 

  27. Z. P. Lu, C. T. Liu, and J. R. Thomson, Phys. Rev. Lett., 92, 245503 (2004).

    Article  Google Scholar 

  28. S. Pauly, G. Liu, and G. Wang, Acta Mater., 57, 5445 (2009).

    Article  Google Scholar 

  29. J. Shen, J. Zou, and L. Ye., J. Non-Cryst. Solids, 351, 2519 (2005).

  30. L. Q. Xing and P. O. Chin, Acta Mater., 45, 9, 3765 (1997).

    Article  Google Scholar 

  31. S. Pauly, J. Das, and C. Duhamel, Adv. Eng. Mater., 9, 487 (2007).

    Article  Google Scholar 

  32. Y. F. Sun, B. Wei, and Y. R. Wang, Appl. Phys. Lett., 87, 051905 (2005).

    Article  Google Scholar 

  33. J. Das, S. Pauly, and C. Duhamel., J. Mater. Res., 22, 326 (2007).

  34. S. Pauly, J. Das, and J. B. Mattern, Scr. Metall. Mater., 60, 431 (2009).

    Article  Google Scholar 

  35. F. Jiang, D. H. Zhang, and L. S. Zhang, Mater. Sci. Eng. A, 467, 139 (2007).

    Article  Google Scholar 

  36. Z. H. Chen and D. Chen, Rapid Solidification of Al Alloys, Metallurgy Industry Press, Beijing, (2009).

    Google Scholar 

  37. A. Inoue, D. Kawase, and A. P. Tsai, Mater. Sci. Eng. A, 178, 255 (1994).

    Article  Google Scholar 

  38. A. Inoue, T. Zhang, and N. Nishiyama, Mater. Trans. JIM, 34, 1234 (1993).

    Article  Google Scholar 

  39. T. Zhang, A. Inoue, and T. Masumotor, Mater. Trans. JIM, 32, 1005 (1991).

    Article  Google Scholar 

  40. A. Inoue, T. Zhang, and N. Nishiyama, Mater. Sci. Eng. A, 179/180, 210 (1994).

  41. J. Eckert, J. Das, and W. Loser, J. Non-Cryst. Solids, 353, 3742 (2007).

    Article  Google Scholar 

  42. W. Z. Liang, J. Shen, and J. F. Sun, Mater. Sci. Eng. A, 497, 378 (2008).

    Article  Google Scholar 

  43. A. S. Agron, Acta Metall., 27, 47 (1979).

    Article  Google Scholar 

  44. Y. J. Huang, Y. Sun, and J. Shen, Intermetallics, 18, 2044 (2010).

    Article  Google Scholar 

Download references

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 50804015) and of the Program for New Century Excellent Talents in University (Grant No. NCET-10-0360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Z. Ma.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 36 – 39, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G.Z., Chen, D. Design of Bulk Metallic Glasses and Glass Matrix Composites Near Intermetallic Composition by the Principle of Competitive Growth. Met Sci Heat Treat 58, 483–486 (2016). https://doi.org/10.1007/s11041-016-0040-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-0040-6

Key words

Navigation