Metal Science and Heat Treatment

, Volume 56, Issue 7–8, pp 403–408 | Cite as

Selective High-Temperature Oxidation of Phases in a Cast Refractory Alloy of the 25Cr – 35Ni – Si – Nb – C System

  • G. P. Anastasiadi
  • S. Yu. Kondrat’ev
  • A. I. Rudskoy
Refractory Alloys

The process of oxidation of alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb at a temperature of 400 – 1150°C in air and in vacuum (133 × 10 – 2 Pa) is studied. The content of oxygen on the surface of different phases in the structure of the alloy is determined experimentally after a high-temperature hold of different duration. The oxidation of the alloy is shown to be selective due to differences in the chemical composition of the phases in its structure. It is shown that alloys of the 25Cr – 35Ni – Si – Nb – C system are highly resistant to oxidation, which is explained by the contribution of the matrix γ-phase and chromium carbides.

Key words

cast refractory alloys microstructure phase composition high-temperature oxidation selective oxidation of phases 


The authors are sincerely grateful to Professor N. M. Ryzhov of the Bauman Moscow State Technical University for the valuable criticism and helpful and benevolent discussion of the work and to S. N. Petrov and M. D. Fuks of the “Prometey” Central Research Institute of Composite Materials for the participation in the experiments.


  1. 1.
    A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Metalloved. Term. Obrab. Met., No. 4, 42 – 47 (2013).Google Scholar
  2. 2.
    A. I. Rudskoy, G. P. Anastasiadi, S. Yu. Kondrat’ev, et al., “Effect of the factor of the number of electron vacancies on the kinetics of formation, growth and dissolution of phases in refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb under long-term high-temperature holds,” Fiz. Met. Metalloved., 115(1), 3 – 13 (2014).Google Scholar
  3. 3.
    N. Birks and D. Mayer, An Introduction into High-Temperature Oxidation of Metals [Russian translation], Metallurgiya, Moscow (1987), 184 p.Google Scholar
  4. 4.
    R. F. Voitovich, Oxidation of Carbides and Nitrides [in Russian], Naukova Dumka, Kiev (1981), 192 p.Google Scholar
  5. 5.
    N. McIntyre, N. Chen, and C. Chen, “Characterization of oxide structures formed on nickel-chromium alloy during low pressure oxidation at 500 – 600°C,” Oxidation Met., 33(5 – 6), 458 – 479 (1990).Google Scholar
  6. 6.
    H. Asteman, J. Svensson, and L. Johansson, “Oxidation of 310 (25/20) steel in H2O/O2 mixture at 600°C. Effect of water-vapor-enhanced chromium evaporation,” Corros. Sci., 44, 2635 – 2649 (2002).CrossRefGoogle Scholar
  7. 7.
    C. Ostwald and H. Grabke, “Initial oxidation and chromium diffusion. Effects of surface working on 9 – 20% Cr steels,” Corros. Sci., 46, 1113 – 1127 (2004).CrossRefGoogle Scholar
  8. 8.
    B. A. Pint, “The effect of water vapor on Cr depletion in advanced recuperator alloys,” in: Proc. ASME, Turbo Expo 2005, Reno-Tahoe, Nevada, June (2005), pp. 27 – 34.Google Scholar
  9. 9.
    A. S. Oryshchenko, “Structural materials for radiant coils of high-temperature units of the petrochemical complex,” Metallurg, No. 2, 66 – 68 (2008).Google Scholar
  10. 10.
    A. I. Rudskoy, G. P. Anastasiadi, A. S. Oryshchenko, et al., “Special features of structural changes in refractory alloy 45Kh26N33S2B2 under operating temperatures. Report 3. Mechanism and kinetics of phase transformations,” Nauch.-Tekh. Vedomosti SPbGPU, Ser. Nauka Obraz., No. 3-2(154), 143 – 150 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • G. P. Anastasiadi
    • 1
  • S. Yu. Kondrat’ev
    • 1
  • A. I. Rudskoy
    • 1
  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations