Advertisement

Metal Science and Heat Treatment

, Volume 55, Issue 11–12, pp 675–679 | Cite as

A Study of the Microstructure of Diffusion Joints of TiNi-Base Alloys

  • K. S. Senkevich
Article

The effect of welding modes on formation of microstructure in diffusion joints of TiNi-base alloys is studied. The optimum modes of diffusion welding of TiNi-base alloys yielding quality joints without flaws are determined. It is shown that long-term holds during welding may provoke formation of a liquid phase by a backward peritectic reaction TiNi + Ti2Ni → L + TiNi. Therefore, it is preferable to employ alloys with a minimum content of inclusions of Ti2Ni → Ti4Ni2O particles, which lowers the probability of degradation of the structure of the alloys upon fusion.

Keywords

diffusion welding TiNi shape memory alloys microstructure particles of Ti2Ni/Ti4Ni2

References

  1. 1.
    M. George and A. Kramer, “Comparison of chemistry and inclusion distribution and morphology versus melting method of NiTi alloys,” J. Mater. Eng. Perform., 18(5 – 6), 479 – 483 (2009).Google Scholar
  2. 2.
    I. Szurmana and M. Kursa, “Processing technologies of Ni – Ti based shape memory alloys,” in: ESOMAT 2009, 05026 (2009), DOI:10.1051_esomat_200905026.Google Scholar
  3. 3.
    K. Mehrabi, H. Bahmanpour, A. Shkuhfar, and A. Kneissl, “Influence of chemical composition and manufacturing conditions on properties of NiTi shape memory alloys,” Mater. Sci. Eng. A, 481 – 482(1 – 2), 693 – 696 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Yu. Kollerov, A. A. Il’in, I. S. Pol’kin, et al., “Structural aspects of the process of production of semiproducts from titanium-nickelide-base alloys,” Metally, No. 5, 77 – 85 (2007).Google Scholar
  5. 5.
    Alejandro Toro, Fei Zhou, H. Ming, Wu, et al., “Characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18(5 – 6), 448 – 458 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, “Recent observations of particulates in Nitinol,” Mater. Sci. Eng. A, 481 – 482(1 – 2), 431 – 436 (2008).CrossRefGoogle Scholar
  7. 7.
    Alan R. Pelton, Russel M. Scott, and John DiCello, “The physical metallurgy of nitinol for medical applications,” JOM J. Minerals, Metals Mater. Soc., 55(5), 33 – 37 (2003).CrossRefGoogle Scholar
  8. 8.
    P. Olier, F. Barcelo, J. L. Bechade, et al., “Effect of impurities content (oxygen, carbon, nitrogen) on microstructure and phase transformation temperatures of near equiatomic TiNi shape memory alloys,” in: J. Phys. IV France, IV European Symp. on Martensitic Transformations, pp. C5-143 – C5-148.Google Scholar
  9. 9.
    S. D. Shlyapin, D. E. Gusev, K. S. Senkevich, and V. S. Mamaev, “Structure and properties of welded joints of alloys based on TiNi titanium nickelide,” Tekhnol. Legk. Splavov, No. 3, 65 – 72 (2008).Google Scholar
  10. 10.
    Wei-huai Gong, Yu-hua Chen, and Li-ming Ke, “Microstructure and properties of laser micro welded joint of TiNi shape memory alloy,” Trans. Nonferrous Met. Soc. China, 21(9), 2044 – 2048 (2011).CrossRefGoogle Scholar
  11. 11.
    L. Alberty Viera, F. M. Braz Fernandez, R. M. Miranda, et al., “Mechanical behavior of Nd:YAG laser welded superelastic NiTi,” Mater. Sci. Eng. A, 528, 16 – 17 (25 June), 5560 – 5565 (2011).Google Scholar
  12. 12.
    Wei-huai Gong, Yu-hua Chen, and Li-ming Ke, “Microstructure and properties of laser micro welded joint of TiNi shape memory alloy,” Trans. Nonferrous Met. Soc. China, 21(9), 2044 – 2048 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. G. Song, W. S. Li, and Y. F. Zheng, “The influence of laser welding parameters on the microstructure and mechanical property of the as-jointed NiTi alloy wires,” Mater. Lett., 62(15) (31 May), 2325 – 2328 (2008).Google Scholar
  14. 14.
    T. Haas and A. Schuessler, “Welding and joining of TiNi shape memory alloys,” in: Engineering Aspects and Medical Applications, SMST-99, Proc. 1st Int. European Conf. on Shape Memory and Superelastic Technologies, Antwerpen, Belguim (1999), pp. 103 – 114.Google Scholar
  15. 15.
    T. Shinoda, T. Tsuchiva, and H. Takahashi, “Friction welding of shape memory alloy,” Welding Int., 6(1), 20 – 25 (1992).CrossRefGoogle Scholar
  16. 16.
    K. S. Senkevich and S. D. Shalyapin, “A study of the process of diffusion welding of alloys based on titanium nickelide,” Svar. Proizvod., No. 4, 47 – 50 (2011).Google Scholar
  17. 17.
    K. S. Senkevich and S. D. Shlyapin, “Investigation of the process of diffusion bonding of alloys based on titanium nickelide,” Welding Int., 26(9), 736 – 738 (2012).CrossRefGoogle Scholar
  18. 18.
    D. E. Gusev, K. S. Senkevich, and M. I. Knyazev, “Effect of high-temperature treatment on the structure and properties of TiNi-base alloys,” Metalloved. Term. Obrab. Met., No. 4, 33 – 37 (2012).Google Scholar
  19. 19.
    M. Yu. Kolerov, A. V. Aleksandrov, D. E. Gusev, and A. A. Sharonov, “Effect of blend material and melting method on the structure and shape memory effect of ingots of alloys based on titanium nickelide,” Tekhnol. Legk. Splavov, No. 2, 87 – 93 (2012).Google Scholar
  20. 20.
    M. Morakabati, M. Aboutalebi, S. Kheirandish, et al., “High temperature deformation and processing map of a NiTi intermetallic alloy,” Intermetallics, 19(10), 1399 – 1404 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Morakabati, S. Kheirandish, M. Aboutalebi, et al., “A study on the hot workability of wrought NiTi shape memory alloy,” Mater. Sci. Eng. A, 528(18), 5656 – 5663 (2011).CrossRefGoogle Scholar
  22. 22.
    S. P. Belyaev, F. Z. Gil’mutdinov, and O. M. Kanunnikova, “A study of the processes of oxidation and segregation on the surface of titanium nickelide,” Pis’ma Zh. Teor. Fiz., 25(13), 89 – 94 (1999).Google Scholar
  23. 23.
    M. Nolan and A. M. Syed, “Tofail density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy,” Biomaterials, 31(13) (May), 3439 – 3448 (2010).Google Scholar
  24. 24.
    T. Duerig, A. Pelton, and C. Trepanier, Nitinol: The Book. Part 1, Mechanisms and Behavior, Chap. 9, Alloying and Composition.Google Scholar
  25. 25.
    M. Morakabati, M. Aboutalebi. S. Kheirandish, et al., “Hot tensile properties and microstructural evolution on as cast NiTi and NiTiCu shape memory alloys,” Mater. Design, 32(1), 406 – 413 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.K. É. Tsiolkovsky Russian State Technological University (FGBOU VPO “MATI”)MoscowRussia

Personalised recommendations