Advertisement

Metal Science and Heat Treatment

, Volume 55, Issue 7–8, pp 386–392 | Cite as

Simulation of Heat Treatment and Materials with the Use of the Abaqus Software

  • M. Yaakoubi
  • M. Kchaou
  • F. Dammak
Simulation

A module supplementing the ABAQUS software is developed for solving a joint heat and diffusion problem with allowance for the phase transformations in materials in the process of induction quenching. The approach provides a deeper study of the structure and properties of materials and makes it possible to develop a method for computing the number of phase components, the size of austenite grains, the hardness, the thermophysical characteristics, and the latent heat of induction quenching. Such computations are impossible on the basis of standard softwares. The adequacy of the simulation tool suggested by the authors is confirmed by matching between simulated and experimental data.

Key words

quenching phase transformations hardness ABAQUS 

References

  1. 1.
    M. Kchaou, D. Durand, and F. Dammak, “Superficial quenching of mechanical pieces and calculation of residual stresses: modeling and simulation,” Metal Sci. Heat Treat., 52(3 – 4) (2010).Google Scholar
  2. 2.
    M. Kchaou, M. Yaakoubi, and F. Dammak, “Effect of the superficial hardening on distortion and stress state: application on bearing race,” Int. Rev. Mechan. Eng., 3(4), July (2009).Google Scholar
  3. 3.
    Caner Simsir and Cemil Hakan Gur, “A mathematical framework for simulation of thermal processing of materials: application to steel quenching,” Turkish J. Eng. Env. Sci., 132, 85 – 100 (2008).Google Scholar
  4. 4.
    R. C. Dykhuizen, C. V. Robino, and G. A. Knorovsky, “A method for extracting phase change kinetics from dilatation for multistep transformations: austenitisation of low carbon steel,” Metall. Mater. Trans. B, 30B, 107 (1999).CrossRefGoogle Scholar
  5. 5.
    M. Elfenne, “Etude thermique et métallurgique de la couche trempée par pulvérisation d’eau aprés chauffage superficiel par induction d’un acier XC42,” in: Thesis INPL, Nancy (1985), p. 105.Google Scholar
  6. 6.
    J.W. Christian, The Theory of Phase Transformations in Metals and Alloys. Part 1, Pergamon Press, New York (1981), pp. 525 – 548.Google Scholar
  7. 7.
    J. Orlich, “Les processus d’austenitisation au cours de l’échauffement rapide et l’échauffement par impulsion de l’acier,” Traitement Thermique, 90, 69 – 75 (1974).Google Scholar
  8. 8.
    Caner Simsir and C. Hakan Gur, “3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution,” J. Mater. Proc. Technol., 207, 211, 221 (2008).Google Scholar
  9. 9.
    A. M. Habraken and M. Bourdouxhe, “Coupled thermo-mechanical-metallurgical analysis during cooling process of steel pieces,” Eur. J. Mechan. A. Solids, 11(3), 381 – 402 (1992).Google Scholar
  10. 10.
    W. P. Oleivera, M. A. Savi, P. M. C. L. Pacheco, and L. F. G. Souza, “Thermo mechanical analysis of steel cylinders quenching using a constitutive model with diffusional and non-diffusional phase transformations,” Mechan. Mater., 42, 31 – 43 (2010).CrossRefGoogle Scholar
  11. 11.
    D. P. Koistinen and R. E. Marburguer, “A general equation prescribing extent of the austenite-martensite transformation in pure Fe – C alloys and plain carbon steels,” Acta Metall., 7, 59 – 60 (1959).CrossRefGoogle Scholar
  12. 12.
    “ABAQUS documentation,” in: ABAQUS Analysis User’s Manual.Google Scholar
  13. 13.
    D. Farias, S. Denis, and A. Simon, “Les transformations de phases en cycle thermique rapide et leur modélisation. Cas d’un acier XC42,” Traitement Thermique, 237, 63 – 70 (1990).Google Scholar
  14. 14.
    F. M. B. Fernandes, “Modélisation et calcul de l’évolution de la température et de la microstructure au cours du refroidissement continu des aciers,” in: Thesis INPL, Nancy (1985), p. 177.Google Scholar
  15. 15.
    M. Melander, “A computational and experimental investigation of induction and laser hardening,” in: Thesis Linkoping, Suede (1985), p. 124.Google Scholar
  16. 16.
    W. I. Pumphrey and F.W. Jones, “Inter-relation of hardenability and isothermal transformations,” Data JISI, 159, 137 – 144 (1948).Google Scholar
  17. 17.
    J. B. Leblond and J. Devaux, “A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size,” Acta Metall., 32(1), 137 – 146 (1984).CrossRefGoogle Scholar
  18. 18.
    S. J. Lee and Y. K. Lee, “Effect of austenite grain size on martensitic transformation of a low alloy steel,” Mater. Sci. Forum, 475 – 479, 3169 – 3172 (2005).CrossRefGoogle Scholar
  19. 19.
    Jiang Yue, Yin Zhong-da, Kang Peng-chao, and Liu Yong, “Fuzzy modeling of prediction of M s temperature for martensitic stainless steel,” J.Wuhan Univ. of Technol., Mater. Sci. Ed., 19(4) (2004).Google Scholar
  20. 20.
    M. Umemoto and J. A. Feeney, “Effect of austenitizing temperature and austenite grain size on the formation of a thermal martensite in an iron-nickel-carbon alloy,” Metall. Trans. A, 5A, September, 2041 – 2046 (1974).CrossRefGoogle Scholar
  21. 21.
    D. Mercier, X. Decoopman, and D. Chicot, “Model to determine the depth of a diffusion layer by normal indentations to the surface,” Surf. Coat. Technol., 202, 3419 – 3426 (2008).CrossRefGoogle Scholar
  22. 22.
    B. Smoljian, S. S. Hanza, N. Tomašić, and D. Iljkić, “Computer simulation of microstructure transformation in heat treatment processes,” J. Achiev. Mater. Manuf. Eng., 24, 275 – 282 (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Laboratory of Mechanics, Modeling and Production (LA2MP)SfaxTunisia

Personalised recommendations