Metal Science and Heat Treatment

, Volume 55, Issue 3–4, pp 150–156 | Cite as

Structural and phase changes of iron substrate upon pulse laser deposition of MoSe x solid lubricating coatings

  • S. N. Grigor’ev
  • V. Yu. Fominskii
  • A. G. Gnedovets
  • R. I. Romanov

The effect of the conditions of pulse laser deposition of MoSe x thin-film coatings on the structural and phase state of surface layer on an iron substrate and on the distribution of elements over the thickness of the coatingsubstrate interface is investigated. Model multilayer test pieces bearing a thin film of 57Fe are studied. The speed distributions of single- and double-charge ions due to pulse laser irradiation of a MoSe2 target are measured and used for mathematical modeling of the motion of laser plasma to the surface of the substrate in a pulse electric field. The energy distributions of the incident ions are computed as a function of the time of the action of the high-voltage pulse following the laser pulse and used to explain the experimentally determined effects.

Key words

pulse laser irradiation MoSex coatings mathematical modeling of plasma 


  1. 1.
    Yu. A. Bykovskii, V. N. Nevolin, and V. Yu. Fominskii, Ion and Laser Implantation of Metallic Materials [in Russian], Énergoatomizdat, Moscow (1991), 240 p.Google Scholar
  2. 2.
    P. V. Bykov, V. L. Vorob’ev, V. Ya. Bayankin, and S. N. Korshunov, “Effect of the rate of doing in irradiation with manganese ions on the composition of layers and mechanical properties of carbon steel,” Metalloved. Term. Obrab. Met., No. 6, 48–50 (2011).Google Scholar
  3. 3a.
    S. N. Grigor’ev, A. S. Metel, and S. V. Fedorov, “Modification of structure and properties of high-speed steel by combined vacuum-plasma treatment,” Metalloved. Term. Obrab. Met., No. 1, 9–14 (2012).Google Scholar
  4. 3b.
    S. N. Grigoriev, Yu. A. Melnik, and A. S. Metel, “Broad fast neutral molecule beam sources for industrial-scale beam-assisted deposition,” Surf. Coat. Technol., No. 1 – 2, 44–49 (2002).Google Scholar
  5. 4.
    V. N. Nevolin, V. Yu. Fominskii, R. I. Romanov, and G. A. Kiselev, “Tribological properties of diamond-like carbon coatings formed on steel by ion-assisted deposition from pulse laser plasma,” Uproch. Tekhnol. Pokryt., No. 6, 34–40 (2006).Google Scholar
  6. 5.
    S. N. Grigor’ev, “Recent vacuum-plasma facilities and technologies of combined hardening of tools and machine parts,” Tekhnol. Mashinostr., No. 3, 20–26 (2004).Google Scholar
  7. 6.
    A. Anders (ed.), Handbook of Plasma Immersion Ion Implantation and Deposition, New York (200), 282 p.Google Scholar
  8. 7.
    O. V. Sobol’, A. A. Andreev, S. N. Grigor’ev, et al., “Vacuumarc multilayer nanostructured TiN/Ti coatings: structure, stress state, properties,” Metalloved. Term. Obrab. Met., No. 1, 28–33 (2012).Google Scholar
  9. 8.
    E. V. Smolentsev and S. N. Grigor’ev, “Methodology of design of combined methods of treatment with application of electric field,” Fund. Prikl. Prob. Tekh. Tekhnol., No. 2, 93–100 (2011).Google Scholar
  10. 9.
    V. Yu. Fominski, A. M. Markeev, and V. N. Nevolin, “Pulsed ion beams for modification of metal surface properties,” Vacuum, 42(1/2), 73–74 (1991).CrossRefGoogle Scholar
  11. 10.
    V. Yu. Fominski, V. N. Nevolin, R. I. Romanov, and I. Smurov, “Ion-assisted deposition of MoSex films from laser-generated plume under pulsed electric field,” J. Appl. Phys., 89(2), 1449–1457 (2001).CrossRefGoogle Scholar
  12. 11.
    J. S. Zabinski, J. J. Hu, J. E. Bultman, N. A. Pierce, and A. A. Voevodin, “Stoichiometry and characterization of aluminum oxynitride film grown by ion-beam-assisted pulsed laser deposition,” Thin Solid Films, 516, 6215–6219 (2008).CrossRefGoogle Scholar
  13. 12.
    D. V. Shtansky, T. A. Lobova, V. Yu. Fominski, et al., “Structure and wear behavior of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN coatings,” Surf. Coat. Technol., 183(2–3), 328–336 (2004).CrossRefGoogle Scholar
  14. 13.
    R. S. Bhattacharya, A. K. Rai, and A. Erdemir, “High-energy (MeV) ion beam modification of sputtered MoS2 coatings on sapphire,” Nucl. Instr. Meth. Phys. Res. B, 59/60, 788–792 (1991).CrossRefGoogle Scholar
  15. 14.
    K. J. Wahl, D. N. Dunn, and I. L. Singer, “Effects of ion implantation on microstructure, endurance and wear behavior of IBAD MoS2,” Wear, 237, 1–11 (2000).CrossRefGoogle Scholar
  16. 15.
    V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, and R. I. Romanov, “Study and simulation of growth of MoSex solid lubricating coatings under pulsed laser deposition,” Zh. Teor. Fiz., 79(1), 118–124 (2009).Google Scholar
  17. 16.
    M. Mayer, SIMNRA User’s Guide, Rep. IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany (1997).Google Scholar
  18. 17.
    V. Yu. Fominski, R. I. Romanov, A. G. Gnedovets, and V. N. Nevolin, “About the mechanism of formation of chemical composition of thin-film layers from dichalcogenides of transition metals under pulsed laser deposition,” Zh. Teor. Fiz., 80(10), 120–128 (2010).Google Scholar
  19. 18.
    C. K. Birdsall and A. B. Langdon, Plasma via Computer Simulation, IOP Publ., Bristol (1991), 400 p.Google Scholar
  20. 19.
    V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, and V. E. Koshmanov, “Experimental studies and simulation of ion implantation from pulse laser plasma in pulse electric fields,” Zh. Teor. Fiz., 75(6), 32–37 (2005).Google Scholar
  21. 20.
    V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, and R. I. Romanov, “Special features of pulsed laser deposition of thin-film coatings with the use of anti-drip screen,” Zh. Teor. Fiz., 79(11), 120–127 (2009).Google Scholar
  22. 21.
    C. E. M. Campos, V. Drago, J. C. Lima, et al., “Mössbauer and magnetization studies of Fe25Se75 iron selenides produced by mechanical alloying,” J. Magn. Magn. Mater., 269, 6–14 (2004).CrossRefGoogle Scholar
  23. 22.
    R. Joshee, D. M. Phase, S. V. Ghaisas, et al., “Conversion electron Mössbauer spectroscopy study of ion-beam mixing at Fe – Mo interface,” J. Appl. Phys., 59(2), 388–394 (1986).CrossRefGoogle Scholar
  24. 23.
    E. Ibe, “Picosecond diffusion in a thermal spike during ion mixing,” Nucl. Instr. Meth. Phys. Res. B, 39, 148–152 (1989).CrossRefGoogle Scholar
  25. 24.
    V. Yu. Fominski, S. N. Grigor’ev, R. I. Romanov, and V. N. Nevolin, “Effect of conditions of pulsed laser deposition on tribological properties of thin-film nanostructured coatings based on molybdenum diselenide and carbon,” Zh. Teor. Fiz., 82(4), 96–104 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. N. Grigor’ev
    • 1
  • V. Yu. Fominskii
    • 2
  • A. G. Gnedovets
    • 3
  • R. I. Romanov
    • 1
  1. 1.Moscow State Technological University “STANKIN”MoscowRussia
  2. 2.National Research Nuclear University “MIFI”MoscowRussia
  3. 3.A. A. Baikov Institute for Metallurgy and Materials Science of the Russian Academy of SciencesMoscowRussia

Personalised recommendations