Advertisement

Metal Science and Heat Treatment

, Volume 55, Issue 1–2, pp 100–108 | Cite as

Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti – Nb – (Ta, Zr) alloys

  • V. A. Sheremet’ev
  • S. M. Dubinskii
  • Yu. S. Zhukova
  • V. Brailovski
  • M. I. Petrzhik
  • S. D. Prokoshkin
  • Yu. A. Pustov
  • M. R. Filonov
TITANIUM AND ZIRCONIUM ALLOYS

Such parameters of superelasticity as elastic modulus, residual strain, phase yield point and mechanical hysteresis are determined by cyclic mechanical tests in a tension-unloading mode (2% maximum deformation, 10 cycles) for alloys of the Ti – Nb – Ta and Ti – Nb – Zr systems to be used as materials for medical implants. The testing is preceded by a thermomechanical treatment including multiple cold deformation and post-deformation annealing at various temperatures with water cooling. The stability of the parameters of superelasticity in subsequent aging at room temperature and repeated tests is studied. The annealing modes yielding an oxide film with maximum cohesion strength are determined.

Keywords

titanium alloys shape memory thermomechanical treatment mechanical cyclic tests mechanical properties oxide film cohesion strength electrochemical characteristics 

References

  1. 1.
    L. A. Monasevich (ed.), Shape Memory Alloys and Their Application in Medicine [in Russian], Nauka, Novosibirsk (1992), 742 p.Google Scholar
  2. 2.
    L. Yahia (ed.), Shape Memory Implants, Springer Verlag, New York (2000), 273 p.Google Scholar
  3. 3.
    M. I. Petrzhik and S. G. Fedotov, “Thermal stability and dynamics of martensitic structure in Ti – (Ta, Nb) alloys,” in: Proc. XVI Conf. on Applied Crystallography,World Sci. Publ. (1995), pp. 273 – 276.Google Scholar
  4. 4.
    Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Estimation of the crystallographic strain margin in reversible martensitic β → α transformation in shape memory titanium alloys,” Izv. Ross. Akad. Nauk, Metally, No. 6, 77 – 84 (2010).Google Scholar
  5. 5.
    J. I. Kim, et al., “Shape memory characteristics of Ti – 22Nb – (2 – 8)Zr (at.%) biomedical alloys,” Mater. Sci. Eng. A, 403, 334 – 339 (2005).CrossRefGoogle Scholar
  6. 6.
    H. Y. Kim, S. Hashimoto, J. I. Kim, et al., “Effect of Ta addition on shape memory behavior of Ti – 22Nb alloy,” Mater. Sci. Eng. A, 417, 120 – 128 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-based shape memory and superelastic alloys,” Mater. Sci. Eng. A, 438 – 440, 18 – 24 (2006).Google Scholar
  8. 8.
    S. Miyazaki, “Thermal and stress cycling effects and fatigue properties of Ni – Ti alloys,” in: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London (1990), pp. 374 – 403.Google Scholar
  9. 9.
    K. Otsuka and C. M. Wayman (eds.), Shape Memory Materials, Cambridge Press, Cambridge (1998), 284 p.Google Scholar
  10. 10.
    V. Brailovski, S. Prokoshkin, P. Terriault, and F. Trochu (eds.), Shape Memory Alloys: Fundamentals, Modeling and Applications, ETS Publ., Montreal (2003), 851 p.Google Scholar
  11. 11.
    V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, et al., “Foundations of heat and thermomechanical treatments and their effects on the structure and properties of titanium nickelide-based alloys,” Phys. Met. Metallogr., 97(1), 3 – 55 (2004).Google Scholar
  12. 12.
    V. Brailovski, S. D. Prokoskin, I. Yu. Khmelevskaya, et al., “Structure and properties of the Ti – 50.0 at.% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans., 47(3), 795 – 804 (2006).CrossRefGoogle Scholar
  13. 13.
    S. D. Prokoshkin, V. Brailovski, K. E Inaekyan, et al., “Structure and properties of severely cold rolled and annealed Ti – Ni shape memory alloys,” Mater. Sci. Eng. A, 481 – 482, 114 – 118 (2008).Google Scholar
  14. 14.
    V. Demers, V. Brailovski, S. Prokoshkin, and K. Inaekyan, “Thermomechanical fatigue of nanostructured Ti – Ni shape memory alloys,” Mater. Sci. Eng. A., 513 – 514, 185 – 196 (2009).Google Scholar
  15. 15.
    V. Brailovski, S. Prokoshkin, K. Inaekyan, et al., “Mechanical properties of thermomechanically processed metastable beta Ti – Nb – Zr alloys for biomedical applications,” Mater. Sci. Forum, 706709, 455 – 460 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Prokoshkin, V. Brailovski, K. Inaekyan, et al., “A comparative study of structure formation in thermomechanically treated Ti – Ni and Ti – Nb – (Zr, Ta) SMA,” Mater. Sci. Forum, 706709, 1931 – 1936 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. L. Hao, S. T. Li, S. Y. Sun, et al., “Elastic deformation of Ti – 24Nb – 4Zr – 7.9Sn for biomedical applications,” Acta Biomater., 3, 277 – 286 (2007).CrossRefGoogle Scholar
  18. 18.
    M. J. Jackson and W. Ahmed (eds.), Surface Engineered Surgical Tools and Medical Devices, Springer Verlag, New York (2007), 533 p.CrossRefGoogle Scholar
  19. 19.
    S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, et al., “Structure formation during thermomechanical processing of Ti – Nb – (Zr, Ta) alloys and manifestation of shape-memory effect,” Phys. Met. Metalloved., 112(5), 529 – 542 (2011).Google Scholar
  20. 20.
    V. Brailovski, S. Prokoshkin, K. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti – Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys Comp., 509, 2066 – 2075 (2011).CrossRefGoogle Scholar
  21. 21.
    V. K. Grigorovich, The Hardness and Microhardness of Metals [in Russian], Nauka, Moscow (1976), 230 p.Google Scholar
  22. 22.
    J. R. Davis, Handbook of Materials for Medical Devices [in Russian], ASM Int. (2003), 350 p.Google Scholar
  23. 23.
    J. B. Park and R. S. Lakes, Biomaterials: an Introduction (3rd ed.), Springer Verlag, New York (2007).Google Scholar
  24. 24.
    M. I. Petrzhik, S. G. Fedotov, Yu. K. Kovneristyi, and N. F. Zhebyneva, “Effect of thermocycling on the structure of hardened alloys of the Ti – Nb – Ta system,” Metalloved. Term. Obrab. Met., No. 3, 25 – 27 (1992).Google Scholar
  25. 25.
    N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Progr. Phys., 12, 163 – 184 (1949).CrossRefGoogle Scholar
  26. 26.
    K. Hauffe, Reactions in Solid Bodies and on Their Surface [Russian translation], Izd. Inostr. Literatury, Moscow, Part 1 (1962), 415 p.; Part 2 (1963), 275 p.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. A. Sheremet’ev
    • 1
  • S. M. Dubinskii
    • 1
    • 2
  • Yu. S. Zhukova
    • 1
  • V. Brailovski
    • 2
  • M. I. Petrzhik
    • 1
  • S. D. Prokoshkin
    • 1
  • Yu. A. Pustov
    • 1
  • M. R. Filonov
    • 1
  1. 1.National University of Science and Technology “MISiS,”MoscowRussia
  2. 2.Ecole de Technologie SuperieureMontrealCanada

Personalised recommendations