Metal Science and Heat Treatment

, Volume 54, Issue 9–10, pp 440–445 | Cite as

Volume nanostructurization of low-carbon martensitic steels by thermal action

  • I. V. Ryaposov
  • L. M. Kleiner
  • A. A. Shatsov

The possibility of formation of nanostructure in low-carbon martensitic steel 15Kh2G2NMFB after thermocycling that includes heating to 950°C, 15-min hold and cooling in air, water or oil to room temperature followed by heating to 850°C, 15-min hold and the same cooling is studied.

Key words

low-carbon martensitic steel thermocycling treatment 


  1. 1.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation [in Russian], Logos, Moscow (2000), 272 p.Google Scholar
  2. 2.
    S. A. Tikhomirov, Regular Features of Consolidation of Metallic Nanopowders of Nickel and Iron, Author’s Abstract of Candidate’s Thesis [in Russian], Moscow (2007), 26 p.Google Scholar
  3. 3.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies [in Russian], Nauka-Fizmatlit, Moscow (2007), 416 p.Google Scholar
  4. 4.
    E. V. Kozlov, N. A. Popova, O. V. Kabanova, et al., Evolution of the Phase Composition, Flaw Structure, Internal Stresses and Redistribution of Carbon in Tempering of Cast Structural Steel [in Russian], Izd. SibGIU, Novokuznetsk (2007), 177 p.Google Scholar
  5. 5.
    S. S. Yugay, L. M. Kleiner, A. A. Shatsov, and N. N. Mitrokhovich, “Structural inheritance in low-carbon martensitic steels,” Metalloved. Term. Obrab. Met., No. 12, 24–29 (2004).Google Scholar
  6. 6.
    M. A. Shtremel, Strength of Alloys. Part II. Deformation [in Russian], MISiS, Moscow (1977), 527 p.Google Scholar
  7. 7.
    Yu. G. Andreev, E. I. Zarkova, and M. A. Shtremel, “Boundaries and sub-boundaries in lath martensite. 1. Boundaries of crystals in a packet,” Fiz. Met. Metalloved., 69(3), 161–167 (1990).Google Scholar
  8. 8.
    I. V. Ryaposov, L.M. Kleiner, A. A. Shatsov, and E. F. Noskova, “Formation of grain and lath structure in low-carbon martensitic steels by thermocycling,” Metalloved. Term. Obrab. Met., No. 9, 33–39 (2008).Google Scholar
  9. 9.
    S. L. Akhnazarova and V. V. Kafarov, Methods of Organization of Experiment in Chemical Technology [in Russian], Vysshaya Shkola, Moscow (1985), 319 p.Google Scholar
  10. 10.
    I. V. Ryaposov, Formation of Ultrafinecrystal Structure by Thermal Action on Low-Carbon Martensitic Steels and Magnetic Materials of the Iron-Chromium-Cobalt System, Author’s Abstract of Candidate’s Thesis [in Russian], Nizhny Novgorod (2010), 20 p.Google Scholar
  11. 11.
    R. Cahn (ed.), Physical Metallurgy [Russian translation], Mir, Moscow (1968), Issue 3, 484 p.Google Scholar
  12. 12.
    V. V. Tsellermaer, S. I. Klimashin, O. V. Tikhon’kova, et al., “Electron microscope studies of structural and phase states of cast quenched structural steel 30LhN3MFA,” Izv. Vysh. Ucheb. Zaved., Chern. Metallurg., No. 2, 31–33 (2006).Google Scholar
  13. 13.
    D. M. Larinin, L. M. Kleiner, and A. A. Shatsov, “Structural strength of low-carbon martensitic steel 12Kh2G2NMFB,” Metalloved. Term. Obrab. Met., No. 11, 34–38 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • I. V. Ryaposov
    • 1
  • L. M. Kleiner
    • 1
  • A. A. Shatsov
    • 1
  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations