Metal Science and Heat Treatment

, Volume 53, Issue 7–8, pp 355–359 | Cite as

Electrotechnical anisotropic steels. Part II. State-of-the-art

  • M. L. Lobanov
  • G. M. Rusakov
  • A. A. Redikul’tsev
Electrotechnical Steels

Methods for lowering magnetic loss in electrotechnical anisotropic steels are reviewed. Prospects of development of the production are analyzed. The contribution of Russian scientists and metallurgists into creation of the domestic production process of electrotechnical anisotropic steel is considered.

Key words

electrotechnical anisotropic steel rib texture production methods specific magnetic loss domain structure electroinsulating coating 


The work has been performed within programs of the Russian Academy of Sciences (Topic “Structure”) and of the Federal Purpose Program of the Ministry of Education of Science of the Russian Federation (State Contract 02.740.11.0537).


  1. 1.
    R. W. Cahn and P. T. Haazen (eds.), Physical Metallurgy [Russian translation], Metallurgiya, Moscow (1987), Vol. 3, 624 p.Google Scholar
  2. 2.
    B. Fukuda, T. Irie, and H. Shimanaka, “Observation through surface coatings of domain structure in 3% Si – Fe sheet by a high voltage scanning electron microscope,” IEEE Trans. Magnetics, 13(5), 1499 – 1504 (1977).CrossRefGoogle Scholar
  3. 3.
    A. Brenner and S. Senderoff, “Calculation of stress in electrodeposits from the curvature of a plated strip,” J. Res. National Bureau Stand., 42, 105 – 123 (1949).Google Scholar
  4. 4.
    V. W. Carpenter, Production of Insulative Coatings on Silicon Steel Strips, Pat. No. 29006645 USA, Publ. 29.09.1959.Google Scholar
  5. 5.
    S. Taguchi, “Modern state of development of electrotechnical steels,” Tetsu to Hagane, 62(7), 905 – 915 (1976).Google Scholar
  6. 6.
    D. M. Kohler, Production of Thin, Oriented Silicon-Iron Wherein Grain Growth Inhibitor Is Added to Primary Crystallization Heat Treatment Atmosphere As Function of Mn Content ANd Final Thickness, Pat. No. 3333993 USA, Publ. 01.08.1967.Google Scholar
  7. 7.
    B. K. Sokolov and Yu. N. Dragoshanskii, “Structural barriers and lowering of magnetic loss in anisotropic electrotechnical steels, Fiz. Met. Metalloved., No. 1, 92 – 102 (1991).Google Scholar
  8. 8.
    A. Fieldler and W. Pepperhoff, Method for Reducing Lossiness of Sheet Metal, Pat. No. 3647575 USA, Publ. 07.03.1972.Google Scholar
  9. 9.
    V. V. Gubernatorov, B. K. Sokolov, and I. K. Schastlivtseva, A Method for Processing Metallic Articles, USSR Inv. Certif. No. 527922 [in Russian], Publ. 13.05.1974.Google Scholar
  10. 10.
    I. K. Schastlivtseva, B. K. Sokolov, D. B. Titorov, and V. V. Gubernatorov, “About controlling the size and shape of grains in transformer steel,” Inst. Fiz. Met. Ural. Otd. Akad. Nauk SSSR, Issue 33, 2025 (1977).Google Scholar
  11. 11.
    B. K. Sokolov, V. V. Gubernatorov, V. A. Zaikova, and Yu. N. Dragoshanskii, “Effect of the kind of distribution of substructure on the electromagnetic loss of transformer steel,” Fiz. Met. Metalloved., 44(3), 517 – 522 (1977).Google Scholar
  12. 12.
    B. K. Sokolov, V. V. Gubernatorov,M.M. Noskov, and A. I. Zolotarev, A Method for Heat Treatment of Electrotechnical Steel, USSR Inv. Certif. No. 652230 [in Russian], Publ. 15.03.1979.Google Scholar
  13. 13.
    T. Ichiyama, S. Yamaguchi, T. Iuchi, and K. Kuroki, Stain-Oriented Electromagnetic Steel Sheet with Improved Watt Loss, USA Pat. No. 4293359, Publ. 06.10.1981.Google Scholar
  14. 14.
    B. K. Sokolov and N. G. Teregulov (eds.), Current Topics of Laser Treatment of Steels and Alloys [in Russian], Izd. Nauch.-Proizv. Firmy “Tekhnologiya,” Ufa (1994), 137 p.Google Scholar
  15. 15.
    G. Wille, “Die Laserbehandlung von Elektroblechen bei Thyssen Grillo Funke,” Stahl und Eisen, 21, 59 – 60 (1987).Google Scholar
  16. 16.
    A. Coombs (ed.), Research and Development News, European Electrical Steels Ltd., Newport (1997), No. 1, 12 p.Google Scholar
  17. 17.
    T. Sadayori, Y. Iida, B. Fukuda, et al., “Development of grain-oriented silicon steel sheets with low iron loss,” Kawaski Steel Giho, 21(3), 239 – 244 (1989).Google Scholar
  18. 18.
    K. Sato, M. Ishida, and E. Hinta, “Heat-proof domain-refined grain-oriented electrical steel,” Kawasaki Steel Technical Report, No. 39, Oct., 21 – 28 (1998).Google Scholar
  19. 19.
    Introduction of Grain Oriented Silicon Steel in Nippon Steel Corporation, Nippon Steel Corporation, Sept. 13th (1996), 9 p.Google Scholar
  20. 20.
    Z. Xia, Y. Kang, and Q.Wang, “Developments in the production of grain-oriented electrical steel,” J. Magnetism Magn. Mater., 254 – 255, 307 – 314 (2008).Google Scholar
  21. 21.
    K. Gunther, G. Abbruzzese, S. Fortunati, and G. Ligi, “Recent technology developments in the production of grain-oriented electrical steel,” Steel Res. Int., 76(6), 413 – 421.Google Scholar
  22. 22.
    S. S. Shteinberg, “The problem of Soviet transformer steel,” Elektrichestvo, No. 1 (1932).Google Scholar
  23. 23.
    L. V. Mironov, N. F. Dubov, S. G. Guterman, and M. I. Gol’dshtein, Phase Transformations and Properties of Electrotechnical Steels [in Russian], Metallurgizdat, Sverdlovsk (1962), 35 p.Google Scholar
  24. 24.
    M. L. Lobanov, “Effect of _-phase on formation of structure in electrotechnical anisotropic steel of the nitride variant of inhibition,” in: Proc. Workshop “Phase and Structural Transformations in Steels” [in Russian], Magnitogorsk (2003), Issue 3, pp. 243 – 274.Google Scholar
  25. 25.
    L. B. Kazadzhan, Magnetic Properties of Electrotechnical Steels and Alloys [in Russian], OOO “Nauka i Tekhnologii,” Moscow (2000), 224 p.Google Scholar
  26. 26.
    B. V. Molotilov, A. K. Petrov, V. M. Borovskii, et al., Sulfur in Electrotechnical Steels [in Russian], Metallurgiya, Moscow (1973), 176 p.Google Scholar
  27. 27.
    B. M. Mogutnov, L. P. Emel’yanenko, A. A. Kononov, et al., The Physical Chemistry of Treatment of Electrotechnical Steels [in Russian], Metallurgiya, Moscow (1990), 168 p.Google Scholar
  28. 28.
    V. A. Sinel’nikov and B. S. Ivanov, Melting of Low-Carbon Electrotechnical Steel [in Russian], Metallurgiya, Moscow (1991), 144 p.Google Scholar
  29. 29.
    I. V. Gervas’eva, B. K. Sokolov, I. P. Pechurkova, and A. G. Zhigalin, “Transformation of texture in recrystallization of alloy Fe – 3% Si,” Izv. Akad. Nauk SSSR, Ser. Fiz., 46(4), 669 – 674 (1982).Google Scholar
  30. 30.
    V. V. Gubernatorov, N. A. Bryshko, and B. K. Sokolov, “Origination of centers of secondary recrystallization in alloy Fe – 3% Si,” Fiz. Met. Metalloved., 58(3), 542 – 546 (1984).Google Scholar
  31. 31.
    B. K. Sokolov, A. K. Sbitnev, V. V. Gubernatorov, et al., “On the influence of the annealing heating rate on the recrystallization texture of a deformed single crystal (110)[001] of 3% silicon iron,” Textures Microstruct., 26 – 27, 427 – 443 (1995).Google Scholar
  32. 32.
    B. K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, et al., “The deformation and shear band in the Fe – 3% Si alloy,” Textures Microstruct., 32, 21 – 39 (1999).CrossRefGoogle Scholar
  33. 33.
    S. S. Gorelik and V. Ya. Gol’dshtein, “About formation of “nuclei” of secondary recrystallization in transformer steel,” Fiz. Met. Metalloved., 23(4), 703 – 710 (1967).Google Scholar
  34. 34.
    V. Ya. Gol’dshtein, S. V. Pashchenko, S. N. Grazhdankin, et al., “Structure formation in hot rolling of alloy Fe – 3% Si,” Fiz. Met. Metalloved., 50(6), 1213 – 1217 (1980).Google Scholar
  35. 35.
    D. B. Titorov and N. M. Knyazev, “Types of texture transformations in recrystallization,” Fiz. Met. Metalloved., 53(1), 116 – 123 (1982).Google Scholar
  36. 36.
    D. B. Titorov, “Secondary recrystallization (anomalous grain growth) in a matrix with disperse inclusions of second phase,” Fiz. Met. Metalloved., 73(7), 87 – 92 (1992).Google Scholar
  37. 37.
    M. L. Lobanov, V. A. Shabanov, and O. V. Pervushina, “Formation of natural barriers for anomalous grain growth in anisotropic electrotechnical steel,” Fiz. Met. Metalloved., 86(1), 126 – 133 (1998).Google Scholar
  38. 38.
    G. M. Rusakov, M. L. Lobanov, and K. B. Larionova, “Computation of coefficients of impurity diffusion by the method of decomposition of concentration profile into a Fourier series,” Fiz. Met. Metalloved., 91(1), 14 – 16 (2001).Google Scholar
  39. 39.
    M. L. Lobanov, A. I. Gomzikov, A. I. Pyatygin, and S. V. Akulov, “Decarburization annealing of technical alloy Fe – 3% Si,” Metalloved. Term. Obrab. Met., No. 10, 40 – 45 (2005).Google Scholar
  40. 40.
    G. M. Rusakov, A. A. Redikul’tsev, M. L. Lobanov, and A. I. Gomzikov, “On the possibility of formation of regions with orientation {110} < 001 > in the process of cold deformation of technical alloy Fe – 3% Si,” Fiz. Met. Metalloved., 101(6), 653 – 659 (2006).Google Scholar
  41. 41.
    G. M. Rusakov, A. A. Redikultsev, and M. L. Lobanov, “Formation of mechanism for orientation relationship between {110} < 001 > and {111} < 112 > grains during twinning in Fe – 3% Si alloy,” Metall. Mater. Trans. A, 39(10), 2278 – 2280 (2008).CrossRefGoogle Scholar
  42. 42.
    Redikultsev, S. V. Akulov, M. L. Lobanov, and G. M. Rusakov, “Effect of local plasma treatment on grain refining and on the domain structure of technical alloy Fe – 3% Si,” Fiz. Khim. Obrab. Mater., No. 6, 25 – 31 (2008).Google Scholar
  43. 43.
    G. M. Rusakov, M. L. Lobanov, A. A. Redikultsev, and I. V. Kagan, “Model of {110} < 001 > texture formation in shear bands during cold rolling of Fe – 3 pct Si Alloy,” Metall. Mater. Trans. A, 40(5), 1023 – 1025 (2009).CrossRefGoogle Scholar
  44. 44.
    G. M. Rusakov, A. A. Redikultsev, I. V. Kagan, and M. L. Lobanov, “Mechanism of formation of shear bands in cold deformation of technical alloy Fe – 3% Si,” Fiz. Met. Metalloved., 109(6), 701 – 707 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • M. L. Lobanov
    • 1
  • G. M. Rusakov
    • 2
  • A. A. Redikul’tsev
    • 1
  1. 1.Ural Federal University in the Name of the First President of Russia B. N. EltsynEkaterinburgRussia
  2. 2.Institute for Metals Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations