Skip to main content
Log in

Electrotechnical anisotropic steels. Part II. State-of-the-art

  • Electrotechnical Steels
  • Published:
Metal Science and Heat Treatment Aims and scope

Methods for lowering magnetic loss in electrotechnical anisotropic steels are reviewed. Prospects of development of the production are analyzed. The contribution of Russian scientists and metallurgists into creation of the domestic production process of electrotechnical anisotropic steel is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. W. Cahn and P. T. Haazen (eds.), Physical Metallurgy [Russian translation], Metallurgiya, Moscow (1987), Vol. 3, 624 p.

    Google Scholar 

  2. B. Fukuda, T. Irie, and H. Shimanaka, “Observation through surface coatings of domain structure in 3% Si – Fe sheet by a high voltage scanning electron microscope,” IEEE Trans. Magnetics, 13(5), 1499 – 1504 (1977).

    Article  Google Scholar 

  3. A. Brenner and S. Senderoff, “Calculation of stress in electrodeposits from the curvature of a plated strip,” J. Res. National Bureau Stand., 42, 105 – 123 (1949).

    CAS  Google Scholar 

  4. V. W. Carpenter, Production of Insulative Coatings on Silicon Steel Strips, Pat. No. 29006645 USA, Publ. 29.09.1959.

  5. S. Taguchi, “Modern state of development of electrotechnical steels,” Tetsu to Hagane, 62(7), 905 – 915 (1976).

    CAS  Google Scholar 

  6. D. M. Kohler, Production of Thin, Oriented Silicon-Iron Wherein Grain Growth Inhibitor Is Added to Primary Crystallization Heat Treatment Atmosphere As Function of Mn Content ANd Final Thickness, Pat. No. 3333993 USA, Publ. 01.08.1967.

  7. B. K. Sokolov and Yu. N. Dragoshanskii, “Structural barriers and lowering of magnetic loss in anisotropic electrotechnical steels, Fiz. Met. Metalloved., No. 1, 92 – 102 (1991).

  8. A. Fieldler and W. Pepperhoff, Method for Reducing Lossiness of Sheet Metal, Pat. No. 3647575 USA, Publ. 07.03.1972.

  9. V. V. Gubernatorov, B. K. Sokolov, and I. K. Schastlivtseva, A Method for Processing Metallic Articles, USSR Inv. Certif. No. 527922 [in Russian], Publ. 13.05.1974.

  10. I. K. Schastlivtseva, B. K. Sokolov, D. B. Titorov, and V. V. Gubernatorov, “About controlling the size and shape of grains in transformer steel,” Inst. Fiz. Met. Ural. Otd. Akad. Nauk SSSR, Issue 33, 2025 (1977).

  11. B. K. Sokolov, V. V. Gubernatorov, V. A. Zaikova, and Yu. N. Dragoshanskii, “Effect of the kind of distribution of substructure on the electromagnetic loss of transformer steel,” Fiz. Met. Metalloved., 44(3), 517 – 522 (1977).

    CAS  Google Scholar 

  12. B. K. Sokolov, V. V. Gubernatorov,M.M. Noskov, and A. I. Zolotarev, A Method for Heat Treatment of Electrotechnical Steel, USSR Inv. Certif. No. 652230 [in Russian], Publ. 15.03.1979.

  13. T. Ichiyama, S. Yamaguchi, T. Iuchi, and K. Kuroki, Stain-Oriented Electromagnetic Steel Sheet with Improved Watt Loss, USA Pat. No. 4293359, Publ. 06.10.1981.

  14. B. K. Sokolov and N. G. Teregulov (eds.), Current Topics of Laser Treatment of Steels and Alloys [in Russian], Izd. Nauch.-Proizv. Firmy “Tekhnologiya,” Ufa (1994), 137 p.

    Google Scholar 

  15. G. Wille, “Die Laserbehandlung von Elektroblechen bei Thyssen Grillo Funke,” Stahl und Eisen, 21, 59 – 60 (1987).

    Google Scholar 

  16. A. Coombs (ed.), Research and Development News, European Electrical Steels Ltd., Newport (1997), No. 1, 12 p.

    Google Scholar 

  17. T. Sadayori, Y. Iida, B. Fukuda, et al., “Development of grain-oriented silicon steel sheets with low iron loss,” Kawaski Steel Giho, 21(3), 239 – 244 (1989).

    Google Scholar 

  18. K. Sato, M. Ishida, and E. Hinta, “Heat-proof domain-refined grain-oriented electrical steel,” Kawasaki Steel Technical Report, No. 39, Oct., 21 – 28 (1998).

  19. Introduction of Grain Oriented Silicon Steel in Nippon Steel Corporation, Nippon Steel Corporation, Sept. 13th (1996), 9 p.

  20. Z. Xia, Y. Kang, and Q.Wang, “Developments in the production of grain-oriented electrical steel,” J. Magnetism Magn. Mater., 254 – 255, 307 – 314 (2008).

    Google Scholar 

  21. K. Gunther, G. Abbruzzese, S. Fortunati, and G. Ligi, “Recent technology developments in the production of grain-oriented electrical steel,” Steel Res. Int., 76(6), 413 – 421.

  22. S. S. Shteinberg, “The problem of Soviet transformer steel,” Elektrichestvo, No. 1 (1932).

  23. L. V. Mironov, N. F. Dubov, S. G. Guterman, and M. I. Gol’dshtein, Phase Transformations and Properties of Electrotechnical Steels [in Russian], Metallurgizdat, Sverdlovsk (1962), 35 p.

    Google Scholar 

  24. M. L. Lobanov, “Effect of _-phase on formation of structure in electrotechnical anisotropic steel of the nitride variant of inhibition,” in: Proc. Workshop “Phase and Structural Transformations in Steels” [in Russian], Magnitogorsk (2003), Issue 3, pp. 243 – 274.

  25. L. B. Kazadzhan, Magnetic Properties of Electrotechnical Steels and Alloys [in Russian], OOO “Nauka i Tekhnologii,” Moscow (2000), 224 p.

    Google Scholar 

  26. B. V. Molotilov, A. K. Petrov, V. M. Borovskii, et al., Sulfur in Electrotechnical Steels [in Russian], Metallurgiya, Moscow (1973), 176 p.

    Google Scholar 

  27. B. M. Mogutnov, L. P. Emel’yanenko, A. A. Kononov, et al., The Physical Chemistry of Treatment of Electrotechnical Steels [in Russian], Metallurgiya, Moscow (1990), 168 p.

    Google Scholar 

  28. V. A. Sinel’nikov and B. S. Ivanov, Melting of Low-Carbon Electrotechnical Steel [in Russian], Metallurgiya, Moscow (1991), 144 p.

    Google Scholar 

  29. I. V. Gervas’eva, B. K. Sokolov, I. P. Pechurkova, and A. G. Zhigalin, “Transformation of texture in recrystallization of alloy Fe – 3% Si,” Izv. Akad. Nauk SSSR, Ser. Fiz., 46(4), 669 – 674 (1982).

    Google Scholar 

  30. V. V. Gubernatorov, N. A. Bryshko, and B. K. Sokolov, “Origination of centers of secondary recrystallization in alloy Fe – 3% Si,” Fiz. Met. Metalloved., 58(3), 542 – 546 (1984).

    CAS  Google Scholar 

  31. B. K. Sokolov, A. K. Sbitnev, V. V. Gubernatorov, et al., “On the influence of the annealing heating rate on the recrystallization texture of a deformed single crystal (110)[001] of 3% silicon iron,” Textures Microstruct., 26 – 27, 427 – 443 (1995).

    Google Scholar 

  32. B. K. Sokolov, V. V. Gubernatorov, I. V. Gervasyeva, et al., “The deformation and shear band in the Fe – 3% Si alloy,” Textures Microstruct., 32, 21 – 39 (1999).

    Article  CAS  Google Scholar 

  33. S. S. Gorelik and V. Ya. Gol’dshtein, “About formation of “nuclei” of secondary recrystallization in transformer steel,” Fiz. Met. Metalloved., 23(4), 703 – 710 (1967).

    CAS  Google Scholar 

  34. V. Ya. Gol’dshtein, S. V. Pashchenko, S. N. Grazhdankin, et al., “Structure formation in hot rolling of alloy Fe – 3% Si,” Fiz. Met. Metalloved., 50(6), 1213 – 1217 (1980).

    Google Scholar 

  35. D. B. Titorov and N. M. Knyazev, “Types of texture transformations in recrystallization,” Fiz. Met. Metalloved., 53(1), 116 – 123 (1982).

    CAS  Google Scholar 

  36. D. B. Titorov, “Secondary recrystallization (anomalous grain growth) in a matrix with disperse inclusions of second phase,” Fiz. Met. Metalloved., 73(7), 87 – 92 (1992).

    Google Scholar 

  37. M. L. Lobanov, V. A. Shabanov, and O. V. Pervushina, “Formation of natural barriers for anomalous grain growth in anisotropic electrotechnical steel,” Fiz. Met. Metalloved., 86(1), 126 – 133 (1998).

    CAS  Google Scholar 

  38. G. M. Rusakov, M. L. Lobanov, and K. B. Larionova, “Computation of coefficients of impurity diffusion by the method of decomposition of concentration profile into a Fourier series,” Fiz. Met. Metalloved., 91(1), 14 – 16 (2001).

    CAS  Google Scholar 

  39. M. L. Lobanov, A. I. Gomzikov, A. I. Pyatygin, and S. V. Akulov, “Decarburization annealing of technical alloy Fe – 3% Si,” Metalloved. Term. Obrab. Met., No. 10, 40 – 45 (2005).

  40. G. M. Rusakov, A. A. Redikul’tsev, M. L. Lobanov, and A. I. Gomzikov, “On the possibility of formation of regions with orientation {110} < 001 > in the process of cold deformation of technical alloy Fe – 3% Si,” Fiz. Met. Metalloved., 101(6), 653 – 659 (2006).

    CAS  Google Scholar 

  41. G. M. Rusakov, A. A. Redikultsev, and M. L. Lobanov, “Formation of mechanism for orientation relationship between {110} < 001 > and {111} < 112 > grains during twinning in Fe – 3% Si alloy,” Metall. Mater. Trans. A, 39(10), 2278 – 2280 (2008).

    Article  Google Scholar 

  42. Redikultsev, S. V. Akulov, M. L. Lobanov, and G. M. Rusakov, “Effect of local plasma treatment on grain refining and on the domain structure of technical alloy Fe – 3% Si,” Fiz. Khim. Obrab. Mater., No. 6, 25 – 31 (2008).

  43. G. M. Rusakov, M. L. Lobanov, A. A. Redikultsev, and I. V. Kagan, “Model of {110} < 001 > texture formation in shear bands during cold rolling of Fe – 3 pct Si Alloy,” Metall. Mater. Trans. A, 40(5), 1023 – 1025 (2009).

    Article  Google Scholar 

  44. G. M. Rusakov, A. A. Redikultsev, I. V. Kagan, and M. L. Lobanov, “Mechanism of formation of shear bands in cold deformation of technical alloy Fe – 3% Si,” Fiz. Met. Metalloved., 109(6), 701 – 707 (2010).

    CAS  Google Scholar 

Download references

The work has been performed within programs of the Russian Academy of Sciences (Topic “Structure”) and of the Federal Purpose Program of the Ministry of Education of Science of the Russian Federation (State Contract 02.740.11.0537).

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 3 – 7, August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobanov, M.L., Rusakov, G.M. & Redikul’tsev, A.A. Electrotechnical anisotropic steels. Part II. State-of-the-art. Met Sci Heat Treat 53, 355–359 (2011). https://doi.org/10.1007/s11041-011-9397-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-011-9397-8

Key words

Navigation