Numerical simulation of structural transformations in hypoeutectoid low-alloy steels

  • N. P. Anufriev
  • M. V. Maisuradze
  • Yu. V. Yudin

Numerical simulation of the kinetics of ferritic and pearlitic transformations due to arbitrary cooling of low-alloy hypoeutectoid steels is performed. The initial data for the computations are isothermal and thermokinetic diagrams of decomposition of supercooled austenite of the studied steels. The temperatures of the start and end of pearlitic transformation due to continuous cooling are computed using the isothermal diagrams for steels 35Kh, 35KhM and 12Kh2N2. The results are used to plot thermokinetic diagrams of decomposition of supercooled austenite. For steels 15KhF, 20KhM, 25KhGF, 12Kh2N2, and 50KhF the location of the line of the end of ferritic transformation is determined using the method of successive approximations by inverse computation of the thermokinetic diagrams of decomposition of supercooled austenite into “ideal” isothermal diagrams. This makes it possible to compute the amount of the formed ferrite for the chosen thermal trajectories of cooling. The model is checked experimentally for the case of end quenching of a test piece of steel 40Kh.

Key words

numerical simulation, diagram of decomposition of supercooled austenite Kolmogorov – Johnson – Mehl – Avrami equation thermal trajectories of cooling method of successive approximations line of the end of ferritic transformation 


  1. 1.
    M. Umemoto, A. Hiramatsu, A. Moriya, et al., “Watanabe computer modeling of phase transformation from work-hardened austenite, ISIJ Int., 32(3), 306 – 315 (1992).CrossRefGoogle Scholar
  2. 2.
    Y. J. Lan, D. Z. Li, and Y. Y. Li, “Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method,” Acta Mater., 52, 1721 – 1729 (2004).CrossRefGoogle Scholar
  3. 3.
    L. Zhang, C. B. Zhang, and Y. M. Wang, “A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling,” Acta Mater., 51, 5519 – 5527 (2003).CrossRefGoogle Scholar
  4. 4.
    M. R. Varma and R. Sasikumar, “Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions,” Bull. Mater. Sci., 24(3), 305 – 312 (2001).CrossRefGoogle Scholar
  5. 5.
    C. J. Huang and D. J. Browne, “A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels,” Acta Mater., 54(1), 11 – 21 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Militzer, R. Pandi, and E. B. Hawbolt, “Austenite to ferrite transformation kinetics during continuous cooling,” Metall. Mater. Trans. A, 27, 1547 – 1550 (1996).CrossRefGoogle Scholar
  7. 7.
    M. Enomoto and H. I. Aaronson, “Nucleation kinetics of proeutectoid ferrite at austenite grain boundaries in Fe – C – X alloys,” Metall. Trans. A, 17A(8), 1385 – 1397.Google Scholar
  8. 8.
    I. I. Boydjiev, P. F. Thomson and Y. C. Lam, “Computation of the diffusional transformation of continuously cooled austenite for predicting the coefficient of thermal expansion in the numerical analysis of thermal stress,” ISIJ Int., 36(11), 141301419 (1996).Google Scholar
  9. 9.
    A. N. Kolmogorov, “About the statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, No. 3, 355 – 359 (1937).Google Scholar
  10. 10.
    M. Avrami, “Kinetics of phase change II. Transformation-time relations for random distribution on nuclei,” J. Chem. Phys., 8(2), 212 – 224 (1940).CrossRefGoogle Scholar
  11. 11.
    T. T. Pham, E. B. Hawbolt, and J. K. Brimacombe, “Predicting the onset of transformation under noncontinuous cooling conditions,” Metall. Mater. Trans. A, 26A, 1987 – 2000 (1995).CrossRefGoogle Scholar
  12. 12.
    J. S. Ye, H. B. Chang, and T. Y. Hsu, “On the application of the additivity rule in pearlitic transformation in low alloy steels,” Metall. Mater. Trans. A, 34A(6), 1259 – 1264 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Lusk and H.-J. Jou, “On the rule of additivity in phase transformation kinetics,” Metall. Mater. Trans. A, 28A, 287 – 291 (1997).CrossRefGoogle Scholar
  14. 14.
    M. Suehiro, T. Senuma, H. Yada, and K. Sata “Application of mathematical model for predicting microstructural evolution to high carbon steels,” ISIJ Int., 32(3), 433 – 439 (1992).CrossRefGoogle Scholar
  15. 15.
    D. L. Song, J. F. Gu,W. M. Zhang, et al., “Numerical simulation on temperature and microstructure during quenching process of large-sized AISI P20 steel die blocks,” Trans. Mater. Heat Treatment, 25(5), 740 – 745 (2004).Google Scholar
  16. 16.
    Z. Lu, G. Wang, and W. Gao, “Modeling of phase transformation behavior in hot-deformed and continuously cooled C – Mn steels,” J. Mater. Eng. Perform., 5(4)(8), 521 – 525 (1996).CrossRefGoogle Scholar
  17. 17.
    J. Mujta, A. K. Zurek, M. Cola, et al., “An integrated computer model with application for austenite-to-ferrite transformation during hot deformation of Nb microalloyed steels,” Metall. Mater. Trans. A, 33A(5), 1509 – 1520 (2002).CrossRefGoogle Scholar
  18. 18.
    N. V. Vlasova, N. A. Adamova, and V. G. Sorokin, “Stress-strain state of steel parts in controlled cooling,” Metalloved. Term. Obrab. Met., No. 12, 38 – 41 (1986).Google Scholar
  19. 19.
    L. E. Popova and A. A. Popov, Diagrams of Austenitic Transformation in Steels and of β-Solution in Titanium Alloys: a Handbook for Heat Treatment Specialists [in Russian], Metallurgiya, Moscow (1991), 503 p.Google Scholar
  20. 20.
    J. W. Cahn, “Transformation kinetics during continuous cooling,” Acta Metall., 4, 572 – 575 (1956).CrossRefGoogle Scholar
  21. 21.
    V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Pearlite in Carbon Steels [in Russian], UrO RAN, Ekaterinburg (2007), 57 p.Google Scholar
  22. 22.
    GOST 5657–69, Steel. Method for Testing for Hardenability, Act. 1969.06.27 [in Russian], Izdatel’stvo Standartov, Moscow (1993), Group B09, 10 p.Google Scholar
  23. 23.
    V. P. Tarasik, Mathematical Modeling of Engineering Systems [in Russian], DizainPRO, Minsk (1997), 640 p.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • N. P. Anufriev
    • 1
  • M. V. Maisuradze
    • 1
  • Yu. V. Yudin
    • 1
  1. 1.Ural Federal University in the Name of the First President of Russia B. N. EltsynYekaterinburgRussia

Personalised recommendations