Metal Science and Heat Treatment

, Volume 53, Issue 1–2, pp 91–94 | Cite as

Surface alloying of carbon steels from electrolytic plasma

  • M. R. Bayati
  • R. Molaei
  • K. Janghorban

Methods of light microscopy, measuring of microhardness, and energy-dispersive x-ray spectroscopy are used to study the changes in the surface layer of steel AISI 1045 after treatment by electrolytic plasma. The effects of the applied voltage, of the duration of the process, and of the concentration of the electrolyte on the micro-hardness and transfer of the alloying element (chromium) to the surface are determined.

Key words

treatment in plasma electrolyte surface hardening heat treatment microhardness 


  1. 1.
    T. V. Rajan, C. P. Sharman, and A. Sharma, Heat Treatment – Principles and Techniques, Prentice-Hall of India Private Ltd, New Delhi (1994).Google Scholar
  2. 2.
    S. F. Luk, T. P. Leung, W. S. Miu, and I. Pashby, “Facilities design for electrolytic surface hardening of medium carbon steels,” in: Proc. 7th Int. Manufacturing Conf. in China, Harbin, China (1995), Vol. 2, pp. 633–638.Google Scholar
  3. 3.
    S. F. Luk, T. P. Leung, W. S. Miu, and I. Pashby, “A study of the effect of average preset voltage on hardness during electrolytic surface-hardening in aqueous solution,” J. Mater. Proc. Technol., 91, 245 (1999).CrossRefGoogle Scholar
  4. 4.
    P. M. Unterwiser, H. E. Boyer, and J. J. Kubbs, Heat Treater’s Guide: Standard Practices and Procedures for Steel, American Society for Metals, Ohio (1982).Google Scholar
  5. 5.
    P. Gupta, G. Tenhundfeld, E. O. Daigle, and D. Ryabkov, “Electrolytic plasma technology: science and engineering–an overview,” Surf. Coat. Technol., 25, 8746 (2007).CrossRefGoogle Scholar
  6. 6.
    S. F. Luk, T. P. Leung, W. S. Miu, and I. Pashby, “A study of the effect of average preset voltage on effective case depth during electrolytic surface-hardening,” Mater. Charact., 42, 65 (1999).CrossRefGoogle Scholar
  7. 7.
    S. F. Luk, T. P. Leung, W. S. Miu, and I. Pashby, “Development of electrolytic heat-treatment in aqueous solution,” J. Mater. Proc. Technol., 84, 189 (1998).CrossRefGoogle Scholar
  8. 8.
    A. L. Yerokhin, V. V. Lyubimov, and R. V. Ashitkof, “Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminum alloys,” Ceram. Int., 24, 1, (1998).CrossRefGoogle Scholar
  9. 9.
    X. Nie, Q. Hao, and J. Wei, “A novel modification technique for metal surface,” J. Wuhan Univ. Tech., 11, 28 (1996).Google Scholar
  10. 10.
    X. Nie, C. Tsotsos, A. Wilson, et al., “Characteristics of a plasma electrolytic nitrocarburizing treatment for stainless steels surfaces,” Coat. Technol., 139, 135 (2001).CrossRefGoogle Scholar
  11. 11.
    M. Tarakci, K. Korkmaz, Y. Gencer, and M. Usta, “Plasma electrolytic surface carburizing and hardening of pure iron,” Surf. Coat. Technol., 199, 205 (2005).CrossRefGoogle Scholar
  12. 12.
    P. N. Belkin, Electrochemico-Thermal Treatment of Metals in Alloys [in Russian], Moscow (2005).Google Scholar
  13. 13.
    A. L. Yerokhin, X. Nie, A. Leyland, et al., “Plasma electrolysis for surface engineering,” Surf. Coat. Technol., 122, 73 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • M. R. Bayati
    • 1
    • 2
  • R. Molaei
    • 1
  • K. Janghorban
    • 2
  1. 1.Iran University of Science and TechnologyTehranIran
  2. 2.Shiraz UniversityShirazIran

Personalised recommendations