Advertisement

Metal Science and Heat Treatment

, Volume 53, Issue 1–2, pp 45–48 | Cite as

Effect of aluminum content on synthesis of Ti2AlC and Ti3AlC2 during treatment in a high-energy mill and hot pressing

  • Jianfeng Zhu
  • Guoquan Qi
  • Fen Wang
  • Haibo Yang
  • Ying Li
TECHNICAL INFORMATION
  • 78 Downloads

Treatment of initial powders of titanium, carbon and aluminum in a high-energy mill and pressure sintering are used for synthesizing dense and single-phase Ti2AlC and Ti3AlC2 ceramics. The effect of the content of aluminum and of the sintering temperature on the synthesis process is studied. During treatment in the high-energy mill the initial Ti, Al and C react and yield TiC and TiAl x . In the course of subsequent pressure sintering and depending on the content of aluminum, the milled powders interact and form TiC/Ti2AlC, Ti3AlC2,Ti2AlC, and Ti2AlC/TiAl.

Key words

ternary Ti2AlC and Ti3AlC2 compounds high-energy milling pressure sintering 

References

  1. 1.
    J. F. Zhu, J. Q. Gao, J. F. Yang, et al., J. Mater. Sci. Eng. A, 490, 62 – 65 (2008).CrossRefGoogle Scholar
  2. 2.
    Z. J. Lin, M. J. Zhuo, Y. C. Zhou, et al., Acta Mater., 54, 1009 – 1015 (2006).CrossRefGoogle Scholar
  3. 3.
    J. Y. Wang, Y. C. Zhou, Z. J. Lin, et al., Appl. Phys. Lett., 86 (2005).Google Scholar
  4. 4.
    Y. Khoptiar and I. Gotman, Mater. Lett., 57, 72 – 76 (2002).CrossRefGoogle Scholar
  5. 5.
    W. B. Zhou, B. C. Mei, J. Q. Zhu, and X. L. Hong, Mater. Lett., 59, 131 – 134 (2005).CrossRefGoogle Scholar
  6. 6.
    P. Wang, B. C. Mei, X. L. Hong, and W. B. Zhou, Trans. Nonferrous Met. Soc. China, 17, 1001 – 1004 (2007).CrossRefGoogle Scholar
  7. 7.
    M. W. Barsoum, M. Ali, and T. El-raghy, Metall. Mater. Trans. A, 3, 1857 – 1865 (2000).CrossRefGoogle Scholar
  8. 8.
    Y. C. Zhou and X. H. Wang, Mater. Res. Innov., 5, 87–93 (2001).CrossRefGoogle Scholar
  9. 9.
    M. Pietzka and J. C. Schuster, J. Phase Equilib., 15, 392 – 400 (1994).CrossRefGoogle Scholar
  10. 10.
    N. V. Tzenov and M. W. Barsoum, J. Am. Ceram. Soc., 83, 825 – 832 (2000).CrossRefGoogle Scholar
  11. 11.
    X. H. Wang and Y. C. Zhou, J. Mater. Chem., 12, 455 – 460 (2002).Google Scholar
  12. 12.
    J. Q. Zhu, B. C. Mei, X. W. Xu, and J. Liu, Mater. Lett., 58, 588 – 592 (2004).CrossRefGoogle Scholar
  13. 13.
    X. H. Wang and Y. C. Zhou, Acta Mater., 50, 3141 – 3149 (2002).Google Scholar
  14. 14.
    C. Q. Peng, C. A. Wang, and Y. Huang, Key Eng. Mater., 280 – 283, 1369 – 1372 (2005).CrossRefGoogle Scholar
  15. 15.
    C. Yang, S. Z. Jin, B. Y. Liang, et al., J. Mater. Process. Technol., 209, 871 – 875 (2009).CrossRefGoogle Scholar
  16. 16.
    X. H. Wang and Y. C. Zhou, Z. Metallkd., 93, 66 – 71 (2002).Google Scholar
  17. 17.
    M. W. Barsoum, Prog. Solid State Chem., 28, 201 – 281 (2000).CrossRefGoogle Scholar
  18. 18.
    W. Jeitschko, H. Nowotny, and F. Benesovsky, Monatsh. Chen., 94, 672 – 676 (1963).CrossRefGoogle Scholar
  19. 19.
    Y. C. Zhou and Z. M. Sun, Phys. Rev. B, 61, 12570 – 12573 (2000).CrossRefGoogle Scholar
  20. 20.
    Z. B. Ge, K. X. Chen, J. M. Gou, et al., J. Euro Ceram. Soc., 23, 567 – 574 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Jianfeng Zhu
    • 1
  • Guoquan Qi
    • 1
  • Fen Wang
    • 1
  • Haibo Yang
    • 1
  • Ying Li
    • 1
  1. 1.Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of EducationShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations