Skip to main content
Log in

Structural strength of low-carbon martensitic steel 12Kh2G2NMFB

  • Published:
Metal Science and Heat Treatment Aims and scope

The structure and characteristics of mechanical properties of low-carbon martensitic steel 12Kh2G2NMFB are studied after various kinds of thermal action. The laws of formation of the structural strength of the martensitic steel are studied as a function of the tempering temperature. The main mechanisms of crack propagation under static loading of the metal with a structure of lath martensite are described and the role of the temper brittleness of kind I is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. F. Ivanov, “Effect of the degree of alloying of material on the structure of lath martensite of iron alloys and steels,” Izv. Vyssh. Ucheb. Zaved., Chern. Met., No. 10, 52 – 54 (1995).

  2. M. A. Shtremel, Strength of Alloys. Part II. Deformation [in Russian], MISiS, Moscow (1997), 527 p.

  3. É. V. Kozlov, N. A. Popova, O. V. Kabanina, et al., Evolution of Phase Composition, Defect Structure, Internal Stresses, and Redistribution of Carbon in Tempering of Cast Structural Steel [in Russian], Izd. SibGIU, Novokuznetsk (2007), 177 p.

  4. G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 238 p.

    Google Scholar 

  5. V. I. Sarrak and S. O. Suvorova, “Interaction between carbon and defects in martensite,” Fiz. Met. Metalloved., 26(1), 147 – 156 (1968).

    CAS  Google Scholar 

  6. L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Steels of Martensitic Class [in Russian], Izd. Perm Gos. Tekh. Univ., Perm (2008), 303 p.

  7. R. A. Grange, “Strengthening steel by austenite grain refinement,” Trans. Quart. ASM, 59, 26 – 47 (1966).

    CAS  Google Scholar 

  8. L. F. Porter and D. S. Dabkowski, “Regulation of grain size by thermocycling,” in: Superfine Grains in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 135 – 164.

  9. D. M. Larinin, L. M. Kleiner, A. A. Shatsov, et al., “Sulfocarbonitriding of low-carbon martensitic steel 12Kh2G2NMFT,” Metalloved. Term. Obrab. Met., No. 5, 48 – 52 (2007).

    Google Scholar 

  10. S. V. Aleksandrov, K. Hulka, A. M. Stepashin, and Yu. D. Morozov, “Effect of manganese and niobium on the properties of low-alloy steels,” Metalloved. Term. Obrab. Met., No. 11, 17 – 21 (2005).

    Google Scholar 

  11. L. M. Kleiner, F. M. Murasov, L. D. Pilikikina, I. A. Kron, L. I. Kogan, and R. I. Éntin, “Structural steel, USSR Inv. Certif. No. 697597, MKI C 22 C 38/44,” Byull. Izobr. Polezn. Modeli, No. 42 (1979).

  12. L. M. Kleiner, I. V. Tolchina, and A. A. Shatsov, “High-strength weldable steel with elevated hardenability, RF Patent No. 2314361, MPK C 22 C 38/58,” Byull. Izobr. Polezn. Modeli, No. 1 (2008).

  13. I. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Formation of grain and lath structure in low-carbon martensitic steels by thermocycling,” Metalloved. Term. Obrab. Met., No. 9, 33 – 39 (2008).

    Google Scholar 

  14. M. A. Shtremel, Strength of Alloys. Part I. Lattice Defects [in Russian], 2nd Ed., MISiS, Moscow (1999), 384 p.

  15. M. N. Georgiev, L. M. Kleiner, L. D. Pilikina, and Yu. N. Simonov, “Crack resistance of low-carbon martensitic steel,” Fiz. Khim. Mekh. Mater., No. 2, 79 – 84 (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kleiner.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 34 – 38, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larinin, D.M., Kleiner, L.M. & Shatsov, A.A. Structural strength of low-carbon martensitic steel 12Kh2G2NMFB. Met Sci Heat Treat 52, 545–549 (2011). https://doi.org/10.1007/s11041-011-9317-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-011-9317-y

Key words

Navigation