Metal Science and Heat Treatment

, Volume 52, Issue 11–12, pp 545–549 | Cite as

Structural strength of low-carbon martensitic steel 12Kh2G2NMFB

  • D. M. Larinin
  • L. M. Kleiner
  • A. A. Shatsov

The structure and characteristics of mechanical properties of low-carbon martensitic steel 12Kh2G2NMFB are studied after various kinds of thermal action. The laws of formation of the structural strength of the martensitic steel are studied as a function of the tempering temperature. The main mechanisms of crack propagation under static loading of the metal with a structure of lath martensite are described and the role of the temper brittleness of kind I is analyzed.

Key words

steel structure martensite structural strength crack resistance fracture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. F. Ivanov, “Effect of the degree of alloying of material on the structure of lath martensite of iron alloys and steels,” Izv. Vyssh. Ucheb. Zaved., Chern. Met., No. 10, 52 – 54 (1995).Google Scholar
  2. 2.
    M. A. Shtremel, Strength of Alloys. Part II. Deformation [in Russian], MISiS, Moscow (1997), 527 p.Google Scholar
  3. 3.
    É. V. Kozlov, N. A. Popova, O. V. Kabanina, et al., Evolution of Phase Composition, Defect Structure, Internal Stresses, and Redistribution of Carbon in Tempering of Cast Structural Steel [in Russian], Izd. SibGIU, Novokuznetsk (2007), 177 p.Google Scholar
  4. 4.
    G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977), 238 p.Google Scholar
  5. 5.
    V. I. Sarrak and S. O. Suvorova, “Interaction between carbon and defects in martensite,” Fiz. Met. Metalloved., 26(1), 147 – 156 (1968).Google Scholar
  6. 6.
    L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Steels of Martensitic Class [in Russian], Izd. Perm Gos. Tekh. Univ., Perm (2008), 303 p.Google Scholar
  7. 7.
    R. A. Grange, “Strengthening steel by austenite grain refinement,” Trans. Quart. ASM, 59, 26 – 47 (1966).Google Scholar
  8. 8.
    L. F. Porter and D. S. Dabkowski, “Regulation of grain size by thermocycling,” in: Superfine Grains in Metals [Russian translation], Metallurgiya, Moscow (1973), pp. 135 – 164.Google Scholar
  9. 9.
    D. M. Larinin, L. M. Kleiner, A. A. Shatsov, et al., “Sulfocarbonitriding of low-carbon martensitic steel 12Kh2G2NMFT,” Metalloved. Term. Obrab. Met., No. 5, 48 – 52 (2007).Google Scholar
  10. 10.
    S. V. Aleksandrov, K. Hulka, A. M. Stepashin, and Yu. D. Morozov, “Effect of manganese and niobium on the properties of low-alloy steels,” Metalloved. Term. Obrab. Met., No. 11, 17 – 21 (2005).Google Scholar
  11. 11.
    L. M. Kleiner, F. M. Murasov, L. D. Pilikikina, I. A. Kron, L. I. Kogan, and R. I. Éntin, “Structural steel, USSR Inv. Certif. No. 697597, MKI C 22 C 38/44,” Byull. Izobr. Polezn. Modeli, No. 42 (1979).Google Scholar
  12. 12.
    L. M. Kleiner, I. V. Tolchina, and A. A. Shatsov, “High-strength weldable steel with elevated hardenability, RF Patent No. 2314361, MPK C 22 C 38/58,” Byull. Izobr. Polezn. Modeli, No. 1 (2008).Google Scholar
  13. 13.
    I. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Formation of grain and lath structure in low-carbon martensitic steels by thermocycling,” Metalloved. Term. Obrab. Met., No. 9, 33 – 39 (2008).Google Scholar
  14. 14.
    M. A. Shtremel, Strength of Alloys. Part I. Lattice Defects [in Russian], 2nd Ed., MISiS, Moscow (1999), 384 p.Google Scholar
  15. 15.
    M. N. Georgiev, L. M. Kleiner, L. D. Pilikina, and Yu. N. Simonov, “Crack resistance of low-carbon martensitic steel,” Fiz. Khim. Mekh. Mater., No. 2, 79 – 84 (1987).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • D. M. Larinin
    • 1
  • L. M. Kleiner
    • 1
  • A. A. Shatsov
    • 1
  1. 1.Perm State Engineering UniversityPermRussia

Personalised recommendations