Metal Science and Heat Treatment

, Volume 52, Issue 3–4, pp 111–117 | Cite as

Structural changes in refractory steel 10Kh9V2MFBR due to creep at 650°C

  • V. A. Dudko
  • A. N. Belyakov
  • V. N. Skorobogatykh
  • I. A. Shchenkova
  • R. O. Kaibyshev

Changes in the structure of steel 10Kh9V2MFBR after creep tests are studied. It is shown that annealing causes inconsiderable changes in the structure of troostomartensite formed due to tempering in the head of a specimen. In the functional part of the specimen, on the contrary, the place of the initial troostomartensite is taken by coarse equiaxed subgrains; the density of the lattice dislocations decreases by an order of magnitude. The change in the microstructure in the process of creep causes a more than 30% decrease in the hardness of the material.


refractory steel structure creep off-orientation of grain/subgrain boundaries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Vismanathan, J. F. Henry, J. Tanzosh, and G. U. S. Stanko, “Program on materials technology for ultra-supercritical coal power plants,” J. Mater. Eng. Perform., 14(3), 281 – 292 (2005).CrossRefGoogle Scholar
  2. 2.
    J. C. Vaillant, Vandenberghe, B. Hahn, and H. Heuser, “T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants – properties and experience,” Int. J. Press. Vess. Piping, 85, 38 – 46 (2008).Google Scholar
  3. 3.
    F. Abe, “Alloy design of creep and oxidation resistant 9Cr steels for thick section boiler components operating at 650°C,” in: Proc. 4th Int. Conf. Advances in Materials Technology for Fossil Power Plants, USA (2004), pp. 202 – 216.Google Scholar
  4. 4.
    R. O. Kaibyshev, V. N. Skorobogatykh, and I. A. Shchenkova, “New steels of martensitic class for heat power industry. High-temperature properties,” Fiz. Met. Metalloved., 109(2), 200 – 215 (2010).Google Scholar
  5. 5.
    M. Taneike, F. Abe, and K. Sawada, “Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions,” Nature, 424, 294 – 296 (2003).CrossRefADSPubMedGoogle Scholar
  6. 6.
    J. Hald, “Microstructure and long-term creep properties of 9 – 12% Cr steels,” Int. J. Press. Vess. Piping, 85, 30 – 37 (2008).CrossRefGoogle Scholar
  7. 7.
    K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, and R. Komine, “Effect of W on recovery of lath structure during creep of high chromium martensitic steels,” Mater. Sci. Eng. A, A267, 19 – 25 (1999).Google Scholar
  8. 8.
    F. Abe, “Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr – W steels,” Mater. Sci. Eng. A, 387389, 565 – 569 (2004).Google Scholar
  9. 9.
    M. Taneike, K. Sawada, and F. Abe, “Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment,” Metall. Mater. Trans. A, 35A, 1255 – 1262 (2004).CrossRefGoogle Scholar
  10. 10.
    V. A. Dudko, R. O. Kaibyshev, and A. N. Belyakov, “Plastic flow of alloy Fe – 0.6% O obtained by mechanical alloying at a temperature of 550 – 700°C,” Fiz. Met. Metalloved., 107(5), 554 – 560 (2009).Google Scholar
  11. 11.
    F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford (1996), pp. 235 – 279.Google Scholar
  12. 12.
    T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Pros. R. Soc. London A, 294, 298 – 309 (1966).CrossRefADSGoogle Scholar
  13. 13.
    A. K. Koul and F. B. Pickering, “Grain coarsening in the Fe – Ni – Cr alloys and the influence of second phase particles,” Acta Metall., 30, 1303 – 1308 (1982).CrossRefGoogle Scholar
  14. 14.
    A. Belyakov, Y. Sakai, T. Hara, et al., “Effect of dispersed particles on microstructure evolved in iron under mechanical milling followed by consolidating rolling,” Metall. Mater. Trans., 32A, 1769 – 1776 (2001).CrossRefGoogle Scholar
  15. 15.
    S. Z. Bokshtein, Structure and Properties of Metallic Alloys [in Russian], Metallurgiya, Moscow (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • V. A. Dudko
    • 1
  • A. N. Belyakov
    • 1
  • V. N. Skorobogatykh
    • 2
  • I. A. Shchenkova
    • 2
  • R. O. Kaibyshev
    • 1
  1. 1.Belgorod State UniversityBelgorodRussia
  2. 2.Central Research Institute for Machine-Building Technology (GNTs RF OAO NPO “TsNIITMASh”)MoscowRussia

Personalised recommendations