Advertisement

Metal Science and Heat Treatment

, Volume 50, Issue 11–12, pp 535–543 | Cite as

What is the difference between martensitic transformation and normal transformation?

  • V. A. Kraposhin
  • A. D. Sil’chenkov
Article
  • 83 Downloads

A brief description of the works of A. P. Gulyaev in the field of martensitic transformations in steels is presented. The difference between Gulyaev’s understanding of the nature of martensitic transformation and the conventional theories is considered. Contradictions of the modern theories of martensitic transformation in steels are discussed and an alternative model of formation of martensite based on reconstruction of coordination polyhedrons and leading to formation of polysynthetic twins is suggested. The possibility of formation of cementite by twinning of austenite by a similar mechanism is shown for the first time.

Keywords

Ferrite Austenite Martensite Cementite Polymorphic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Gulyaev and E. V. Petunina, Metallographic Research of Austenite-to-Martensite Transformation [in Russian], Mashgiz, Moscow (1952).Google Scholar
  2. 2.
    A. P. Gulyaev and E. V. Petunina, “A metallographic study of austenite-to-martensite transformation,” Zh. Tekh. Fiz., 23(4), 602 – 612 (1953).Google Scholar
  3. 3.
    A. P. Gulyaev and I. I. Lifanov, “A study of austenite-tomartensite transformation at a temperature close to absolute zero,” Trudy Mosk. Vech. Mashinostr. Inst., Issue 2, 139 – 144 (1955).Google Scholar
  4. 4.
    A. P. Gulyaev and V. D. Zelenova, “A study of martensitic transformation in austenitic powder. A letter to editorial board,” Fiz. Met. Metalloved., 6(5), 945 – 946 (1958).Google Scholar
  5. 5.
    E. C. Bain, “The nature of martensite,” Trans. Am. Inst. Min. Met. Eng., 70, 25 – 46 (1924).Google Scholar
  6. 6.
    G. Kurdjumov and G. Sachs, “Über den Mechanismus der Stahlhärtung,” Z. Phys., 64(5 – 6), 325 – 342 (1930).ADSGoogle Scholar
  7. 7.
    G. M. Wayman, Introduction to Crystallography of Martensitic Transformation, MacMillan, New York (1964).Google Scholar
  8. 8.
    G. V. Kurdyumov, L. M. Utevskii, and R. I. Éntin, Transformations in Iron and Steel [in Russian], Nauka, Moscow (1977).Google Scholar
  9. 9.
    A. P. Gulyaev, Heat Treatment of Steel [in Russian], Mashinostroenie, Moscow (1960).Google Scholar
  10. 10.
    A. L. Roitburd and G. V. Kurdjumov, “The nature of martensitic transformation,” Mater. Sci. Eng., 39, 141 – 167 (1979).CrossRefGoogle Scholar
  11. 11.
    A. P. Gulyaev, “Martensitic transformation in steel,” Metalloved. Term. Obrab. Met., No. 11, 5 – 13 (1959).Google Scholar
  12. 12.
    V. S. Kraposhin, A. L. Talis, and M. N. Pankova, “Polytope topological approach to description of martensitic transformation,” Metalloved. Term. Obrab. Met., No. 8, 23 – 28 (1999).Google Scholar
  13. 13.
    V. S. Kraposhin, A. L. Talis, and J.-M. Dubois, “Structural realization of the polytope approach for the geometrical description of the transition of a quasicrystal into a crystalline phase,” J. Phys., Condens. Matter., 14, 8987 – 8996 (2002).CrossRefADSGoogle Scholar
  14. 14.
    V. S. Kraposhin, M. N. Pankova, A. L. Talis, and Yu. A. Freiman, “An application of a polytope (4D-polyhedron) concept for the description of polymorphic transitions: iron martensite and solid oxygen,” J. Phys. IV France, 112, 119 – 122 (2003).CrossRefGoogle Scholar
  15. 15.
    V. S. Kraposhin, A. L. Talis, and Van Yantzin, “A geometric model of polymorphic transformations in titanium and zirconium,” Metalloved. Term. Obrab. Met., No. 9, 8 – 16 (2005).Google Scholar
  16. 16.
    V. S. Kraposhin, A. L. Talis, and Y. J. Wang, “Description of polymorphic transformation of Ti and Zr in the framework of the algebraic geometry,” Mater. Sci. Eng. A, 438440, 85 – 89 (2006).Google Scholar
  17. 17.
    V. S. Kraposhin, A. L. Talis, Nguen Van Thuan, and O. A. Belyaev, “Crystal structure of intermediate structures in shape memory alloys as realization of structures of algebraic geometry,” Metalloved. Term. Obrab. Met., No. 7, 3 – 9 (2007).Google Scholar
  18. 18.
    V. S. Kraposhin, A. L. Talis, and Nguen Van Thuan, “The structure of ω-phase as projection of a {3, 4, 3} polytope and intermediate configuration in polymorphic transformations in titanium and zirconium,” Materialovedenie, No. 8, 2 – 9 (2007).Google Scholar
  19. 19.
    V. S. Kraposhin, A. L. Talis, and M. I. Samoylovitch, “Axial (helical) substructures determined by the root lattice E8 as generating clusters of the condensed phases,” J. Non-Cryst. Solids, 353, 3279 – 3284 (2007).CrossRefADSGoogle Scholar
  20. 20.
    A. Mujica, A. Rubio, A. Muònoz, and R. J. Needs, “High-pressure phases of group IV, III – V and II – VI compounds,” Rev. Mod. Phys., 75, 864 – 912 (2003).CrossRefADSGoogle Scholar
  21. 21.
    V. S. Kraposhin, “Golden section in the structure of metals,” Metalloved. Term. Obrab. Met., No. 8, 3 – 10 (2005).Google Scholar
  22. 22.
    V. S. Kraposhin and A. L. Talis, “Possibilities of generalized crystallography: description of polymorphic transformations and new defects in the structure of diamond,” Izv. Vuzov, Mater. Elektron. Tekh., No. 2, 45 – 53 (2006).Google Scholar
  23. 23.
    B. G. Hyde, S. Anderson, M. Bakker, et al., “The (twin) composition plane as an extended defect and structure-building entity in crystals,” Progr. Solid St. Chem., 12, 273 – 327 (1979).CrossRefGoogle Scholar
  24. 24.
    E. J. Fasiska and G. A. Jeffrey, “On the cementite structure,” Acta Cryst., 19, 463 – 471 (1965).CrossRefGoogle Scholar
  25. 25.
    K. Schubert, Kristallstrukturen Zweikomponentiger Phasen [in German], Springer Verlag, Berlin (1964).Google Scholar
  26. 26.
    I. V. Isaichev, Zh. Tekh. Fiz., 17(6), 835 – 838 (1947).Google Scholar
  27. 27.
    I. V. Isaichev, Zh. Tekh. Fiz., 17(7), 839 – 854 (1947).Google Scholar
  28. 28.
    L. I. Lysak and B. I. Nikolaev, Dokl. Akad. Nauk SSSR, 153, 812 (1963).Google Scholar
  29. 29.
    V. V. Burdin, V. N. Gridnev, V. N. Minakov, et al., “Phase transformations in iron and carbon steels,” Metallofizika, Issue 55, 3 – 8 (1974).Google Scholar

Publications of A. P. Gulyaev Devoted to Martensitic Transformation

  1. 1.
    A. P. Gulyaev, “Martensitic transformation in high-speed steel,” Kachestv. Stal’, No. 1, 41 – 47 (1937).Google Scholar
  2. 2.
    A. P. Gulyaev, “A study of austenite transformations at a temperature below 0°C,” Zavod. Lab., VIII(2), 230 – 232 (1939).Google Scholar
  3. 3.
    A. P. Gulyaev, “Transformation of retained austenite in high-alloy steels at a temperature below 0°C,” Metallurg, III(3), 64 – 71 (1939).Google Scholar
  4. 4.
    A. P. Gulyaev, “Austenite-to-martensite transformation,” in: Heat Treatment of Metals [in Russian], Sverdlovsk, Moscow (1950), pp. 48 – 72.Google Scholar
  5. 5.
    A. P. Gulyaev and V. G. Vorob’ev, “About austenite-tomartensite transformation at subzero temperatures. II,” Zh. Tekh. Fiz., Issue 10, 1164 – 1169 (1951).Google Scholar
  6. 6.
    A. P. Gulyaev and E. V. Petunina, Metallographic Research of Austenite-to-Martensite Transformation [in Russian], Mashgiz, Moscow (1952) (TsNIITMASh Book 47).Google Scholar
  7. 7.
    A. P. Gulyaev and E. V. Petunina, “A metallographic method for studying austenite-to-martensite transformation at subzero temperatures,” Zavod. Lab., No. 1, 53 – 55 (1952).Google Scholar
  8. 8.
    A. P. Gulyaev and E. V. Petunina, “A metallographic study of austenite-to-martensite transformation,” Zh. Tekh. Fiz., 23(4), 602 – 612 (1953).Google Scholar
  9. 9.
    A. P. Gulyaev and A. P. Akshentseva, “A study of the kinetics of austenite-to-martensite transformation,” in: Coll. Works TsNIITMASh [in Russian], Moscow (1954), Book 64, pp. 130 – 170.Google Scholar
  10. 10.
    A. P. Gulyaev and A. N. Alfimov, “Some special features of martensitic transformation determined with the help of metallographic analysis,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 4, 93 – 99 (1954).Google Scholar
  11. 11.
    A. P. Gulyaev and Ya. E. Sanchuk, “About the relation between the temperature of the beginning of martensitic transformation, the crystal lattice parameter, and the specific volume of austenite,” in: Research of the Structure of Tool Steels [in Russian], in: Coll. Works VNIIinstrument [in Russian], Moscow (1954), pp. 133 – 137.Google Scholar
  12. 12.
    A. P. Gulyaev and A. N. Alfimov, “About the rate of growth of martensite crystal,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 3, 88 – 90 (1954).Google Scholar
  13. 13.
    A. P. Gulyaev, “Martensitic transformation,” Trudy Nauch.-Tekh. Obshch. Chern. Met., No. 3, 57 – 72 (1955).Google Scholar
  14. 14.
    A. P. Gulyaev and A. P. Akshentseva, “Effect of cooling rate on the kinetics of austenite-to-martensite transformation,” Zh. Tekh. Fiz., 25(2), 299 – 312 (1955).Google Scholar
  15. 15.
    A. P. Gulyaev and A. N. Alfimov, “Astudy of martensitic transformation in steel,” Zh. Tekh. Fiz., 25(4), 680 – 686 (1955).Google Scholar
  16. 16.
    A. P. Gulyaev and I. I. Lifanov, “A study of austenite-to-martensite transformation at a temperature close to absolute zero,” Trudy Mosk. Vech. Mashinostr. Inst., Issue 2, 139 – 144 (1955).Google Scholar
  17. 17.
    A. P. Gulyaev, A. A. Kolesnikova, and E. I. Malinkina, “Scale of martensite microstructures,” Zavod. Lab., 22(3), 314 – 315 (1956).Google Scholar
  18. 18.
    A. P. Gulyaev and V. D. Zelenova, “A diffraction study of martensite transformation due to tempering in a powder and in a solid specimen (A letter to editorial board),” Fiz. Met. Metalloved., 6(5), 936 – 937 (1958).Google Scholar
  19. 19.
    A. P. Gulyaev and V. D. Zelenova, “A study of martensitic transformation in austenite powder (A letter to editorial board),” Fiz. Met. Metalloved., 6(5), 945 – 946 (1958).Google Scholar
  20. 20.
    A. P. Gulyaev and V. N. Arskii, “Kinetics of formation of strain-induced martensite,” Fiz. Met. Metalloved., 6(5), 866 – 873 (1958).Google Scholar
  21. 21.
    A. P. Gulyaev, “Martensitic transformation in steel,” Metalloved. Term. Obrab. Met., No. 11, 5 – 13 (1959).Google Scholar
  22. 22.
    A. P. Gulyaev and Ya. E. Sanchuk, “Formation of _-martensite in plastic deformation of steel,” Nauch. Dokl. Vysh. Shkoly, Metallurg., No. 2, 181 – 185 (1959).Google Scholar
  23. 23.
    A. P. Gulyaev and V. D. Zelenova, “A study of martensitic transformation in isolated austenite of carbonless iron alloys,” Fiz. Met. Metalloved., 9(4), 525 – 529 (1960).Google Scholar
  24. 24.
    A. P. Gulyaev and V. M. Makarov, “Martensite transformation, mechanical properties, and structure of stainless steels of austenitic-martensitic class,” Metalloved. Term. Obrab. Met., No. 8, 3 – 9 (1960).Google Scholar
  25. 25.
    A. P. Gulyaev and A. S. Shigarev, “Formation of martensite at high deformation rates,” Fiz. Met. Metalloved., 10(5), 691 – 697 (1960).Google Scholar
  26. 26.
    A. P. Gulyaev and M. A. Guzovskaya, “Mechanism of formation ofWidmanstatten ferrite plates,” Sb. Trudov TsNIIChM, Issue 35, 164 – 166 (1963).Google Scholar
  27. 27.
    A. P. Gulyaev and N. I. Karchevskaya, Metalloved. Term. Obrab. Met., No. 11, 2 – 5 (1964).Google Scholar
  28. 28.
    A. P. Gulyaev and M. A. Guzovskaya, “A study of formation of Widmanstatten structure in iron,” Izv. Akad. Nauk SSSR, Metally, No. 1, 112 – 115 (1967).Google Scholar
  29. 29.
    A. P. Gulyaev and M. A. Karchevskaya, “A study of martensitic transformation in alloy N18K8M3T,” Fiz. Met. Metalloved., 23(1), 184 – 187 (1967).Google Scholar
  30. 30.
    A. P. Gulyaev and I. I. Pasternak, “Martensitic transformation in alloys of the ‘covar’ type,” Izv. Akad. Nauk SSSR, Metally, No. 4, 159 – 163 (1972).Google Scholar
  31. 31.
    A. P. Gulyaev, A. P. Shlyamnev, and N. A. Sorokina, “Effect of alloying on martensitic transformation in stainless steels,” Metalloved. Term. Obrab. Met., No. 9, 27 – 30 (1975).Google Scholar
  32. 32.
    A. P. Gulyaev and M. A. Guzovskaya, “Martensitic transformation in iron,” Metalloved. Term. Obrab. Met., No. 6, 2 – 5 (1977).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. A. Kraposhin
    • 1
  • A. D. Sil’chenkov
    • 1
  1. 1.N. É. Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations