Appearance of metastable states in Fe-Ti and Ni-Ti systems in the process of mechanochemical synthesis

  • V. Yu. Zadorozhnyi
  • Yu. A. Skakov
  • G. S. Milovzorov
Mechanochemical Synthesis

Mixtures of Ni-33 at.% Ti and Ti-35 at.% Fe powders are studied after treating in a ball planetary mill for 10, 30, 60, and 120 min under conditions of mechanochemical synthesis (MCS) with the use of methods of x-ray and metallographic analysis. The mechanisms of formation of metastable phases are considered.


Milling Intermetallic Compound Metastable Phasis Solid Solu Initial Component 


  1. 1.
    Yu. A. Skakov, “High-energy cold plastic deformation, diffusion, and mechanochemical synthesis,” Metalloved. Term. Obrab. Met., No. 4, 3–12 (2004).Google Scholar
  2. 2.
    Yu. A. Skakov, “Formation and stability of metastable phases in mechanochemical synthesis,” Metalloved. Term. Obrab. Met., No. 7, 45–54 (2005).Google Scholar
  3. 3.
    A. Ye. Yermakov, V. L. Gapontzev, V. V. Kondratyev, et al., “Phase instability of nanocrystalline driven alloys,” Mater. Sci. Forum, 343–346, Part 2, 577–584 (2000).CrossRefGoogle Scholar
  4. 4.
    C. E. Rodriqyez Torres, F. N. Sanches, and L. A. Mendoza Zeilis, “Decomposition of Fe2B by mechanical grinding,” Phys. Rev. B, 51(18), 12142–12148 (1995).CrossRefADSGoogle Scholar
  5. 5.
    V. L. Gapontsev, and V. M. Koloskov, “Induced diffusion. Driving mechanism of formation of activated alloys,” Metalloved. Term. Obrab. Met., No. 11, 3 (2007).Google Scholar
  6. 6.
    P. Glendsdorf and I. Prigogine, The Thermodynamic Theory of Structure, Stability, and Fluctuations [Russian translation], Mir, Moscow (1973).Google Scholar
  7. 7.
    R. Shwatz and R. Petrich, J. Less-Common Met., 140, 171 (1998).Google Scholar
  8. 8.
    Yu. D. Yagodkin and S. V. Dobatkin, “Use of electron microscopy and x-ray diffraction analysis for determining the size of structural components in nanocrystalline materials,” Zavod. Lab., Diagn. Mater., 73(1), 38–49 (2007).Google Scholar
  9. 9.
    E. V. Shelekhov and T. A. Sviridova, “Simulation of the motion and heating of balls in a planetary ball mill. Effect of treatment modes on the products of mechanical activation of Ni and Nb powders,” Materialovedenie, No. 10, 13–22 (1999).Google Scholar
  10. 10.
    L. Yu. Pustov, S. D. Kaloshkin, V. V. Tcherdyntsev, et al., J. Metastab. Nanocryst. Mater., 10, 373 (2001).Google Scholar
  11. 11.
    E. V. Shelehov, V. V. Tcherdyncev, L. Yu. Pustov, et al., J. Metastab. Nanocryst. Mater., 8, 603 (2000).Google Scholar
  12. 12.
    A. V. Tikhomirov, A. A. Aksenov, E. V. Shelekhov, et al., “Design and measurement of background temperature in a planetary mill with ball charging and quasi-cylindrical milling body,” Izv. Vuzov, Tsvetn. Met., No. 3 (2008).Google Scholar
  13. 13.
    K. B. Gerasimov, A. A. Gusev, V. V. Kolpakov, and E. Yu. Ivanov, “Measurement of background temperature in mechanical fusion in planetary centrifugal mills,” Sibir. Khim. J., No. 3, 140–145 (1991).Google Scholar
  14. 14.
    N. P. Lyakishev (ed.), Phase Diagrams of Binary Metallic Systems, A Handbook [in Russian], Mashinostroenie, Moscow (1997), Vol. 2.Google Scholar
  15. 15.
    N. P. Lyakishev (ed.), Phase Diagrams of Binary Metallic Systems, A Handbook [in Russian], Mashinostroenie, Moscow (2001), Vol. 3, Book 1.Google Scholar
  16. 16.
    S. V. Ketov, Yu. D. Yagodkin, S. M. Minakova, and A. S. Lileev, “An x-ray method for studying the phase composition of Nb-Fe-B amorphous-crystalline alloys,” Zavod. Lab., Diagn. Mater., 70(8), 34–37 (2004).Google Scholar
  17. 17.
    É. I. Spektor and N. V. Edneral, Auxiliary Design Tables on X-Ray Radiography and Electron Microscopy [in Russian], MISiS, Moscow (1972).Google Scholar
  18. 18.
    K. Sudzuki, Amorphous Metals [in Russian translation], Metallurgiya, Moscow (1987).Google Scholar
  19. 19.
    L. N. Larikov, V. M. Fil'chenko, V. F. Mazanko, et al., “Anomalous acceleration of diffusion under pulse loading of metals,” Dokl. Akad. Nauk SSSR, 221(5), 1073–1075 (1975).Google Scholar
  20. 20.
    M. A. Shtremel', “Participation of diffusion in the processes of mechanical alloying,” Metalloved. Term. Obrab. Met., No. 8, 10–12 (2002).Google Scholar
  21. 21.
    V. L. Idenbom, “Interstitial (crowdion) mechanism of plastic strain and fracture,” Pis'ma Zh. Éksp. Teor. Fiz., 12, 526–528 (1970).Google Scholar
  22. 22.
    M. Sh. Akchurin, E. N. Vasev, E. Yu. Mikhina, and V. R. Regel', “Role of the mass transfer of material due to displacements of point defects in the process of microindentation,” Fiz. Tverd. Tela, 30, 760–764 (1988).Google Scholar
  23. 23.
    A. I. Yurkova, Formation of Nanostructure and Mechanical Properties in α-Iron Due to Severe Plastic Deformation by Friction, Author's Abstract of Candidate's Thesis, Kiev (2008).Google Scholar
  24. 24.
    J. Eckert, L. Schultz, and K. Urban, “Synthesis of Ni-Ti and Fe-Ti alloys by mechanical alloying: formation of amorphous phases and extended solid solution,” J. Non-Cryst. Solids, 127, 90–97 (1991).CrossRefADSGoogle Scholar
  25. 25.
    L. Sun, H. Liu, D. H. Gradhurst, and S. Dou, “Formation of FeTi hydrogen storage alloys by ball-milling,” J. Mater. Sci. Lett., 17, 1825–1830 (1998).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. Yu. Zadorozhnyi
    • 1
  • Yu. A. Skakov
    • 1
  • G. S. Milovzorov
    • 1
  1. 1.Moscow Institute for Steel and Alloys (MISiS)MoscowRussia

Personalised recommendations