Advertisement

Metal Science and Heat Treatment

, Volume 50, Issue 5–6, pp 289–294 | Cite as

Heat-resisting ion-plasma coatings for turbine blades based on rhenium-nickel alloys

  • S. A. Budinovskii
  • S. A. Muboyadzhyan
  • A. M. Gayamov
  • A. A. Kos’min
Surface Engineering

Multilayer heat-resisting ion-plasma coatings are considered for protection from high-temperature oxidation in the working blades of turbines made from heat-resisting cast nickel alloys containing rhenium. Metallographic and microprobe data are given for the structure and composition of the coatings, and also for the zone of diffusion interaction at the boundary between the coating and the heat-resistant alloy in the initial state and after oxidation in air at 1100°C for 500 h.

Keywords

Rhenium Nickel Alloy Barrier Layer Turbine Blade Chromium Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Petrushin and I. L. Svetlov, “Physicochemical and structural characteristics of heat-resisting nickel alloys,” Metally, No. 2, 63–73 (2001).Google Scholar
  2. 2.
    W. S. Walston, J. C. Schaefer, and W. H. Murphy, “A new type of microstructural instability in superalloys — SRZ,” in: R. D. Kissinger, D. J. Deye, D. L. Anton, et al. (eds.), Superalloys 1996, The Minerals, Metals and Materials Society (1996), pp. 9–18.Google Scholar
  3. 3.
    E. N. Kablov, S. A. Muboyadzhyan, S. A. Budinovskii, and Ya. A. Pomelov, “Ion-plasma protective coatings for gas-turbine engine blades,” Konversiya Mashinostr., No. 2, 42–47 (1999).Google Scholar
  4. 4.
    S. A. Muboyadzhyan and S. A. Budinovskii, “Condensed and condensation-diffusion coatings for turbine blades made of heat-resisting alloys with controlled crystal structure,” Metalloved. Term. Obrab. Met., No. 4, 15–18 (1996).Google Scholar
  5. 5.
    S. A. Muboyadzhyan and S. A. Budinovskii, “The MAP-1 industrial equipment for depositing protective coatings for various purposes,” Aviats. Prom-st', No. 7–8, 44–48 (1995).Google Scholar
  6. 6.
    S. A. Muboyadzhyan, E. N. Kablov, and S. A. Budinovskii, “A vacuum-plasma technology for making protective coatings of complicated alloys,” Metalloved. Term. Obrab. Met., No. 2, 15–18 (1995).Google Scholar
  7. 7.
    S. A. Muboyadzhyan, S. A. Budinovskii, and V. V. Terekhova, “Ion-plasma diffusion aluminide coatings for gas turbine blades,” Metalloved. Term. Obrab. Met., No. 1, 14–21 (2003).Google Scholar
  8. 8.
    E. N. Kablov, S. A. Muboyadzhyan, S. A. Budinovskii, and Ya. A. Pomelov, “Ion-plasma protective coatings for gas-turbine engine blades,” Konversiya Mashinostr., No. 2, 42–47 (1999).Google Scholar
  9. 9.
    S. A. Budinovskii, E. N. Kablov, S. A. Muboyadzhyan, and A. A. Kos'min, “RF Patent No. 2280096, A Method of Protecting Gas Turbine Blades,” submitted 29.12.2004, published 20.07.2006, Bull. Izobr. Polezn. Modeli, No. 20 (2006).Google Scholar
  10. 10.
    S. A. Budinovskii, E. N. Kablov, and S. A. Muboyadzhyan, “RF Patent No. 2283365, A Method of Protecting Gas Turbine Blades,” submitted 29.11.2004, published 10.09.2006, Bull. Izobr. Polezn. Modeli, No. 25 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • S. A. Budinovskii
    • 1
  • S. A. Muboyadzhyan
    • 1
  • A. M. Gayamov
    • 1
  • A. A. Kos’min
    • 1
  1. 1.All-Russia Institute for Aircraft Materials (FGUP VIAM)MoscowRussia

Personalised recommendations