Advertisement

Metal Science and Heat Treatment

, Volume 49, Issue 5–6, pp 217–226 | Cite as

Effect of alloying and heat treatment on the structure and tribological properties of nitrogen-bearing stainless austenitic steels under abrasive and adhesive wear

  • L. G. Korshunov
  • Yu. N. Goikhenberg
  • N. K. Chernenko
Alloyed Steels and Alloys

Abstract

The effect of nitrogen, silicon, and aging modes on the structure, resistance to abrasive and adhesive wear, friction factor, and mechanical properties of nitrogen-bearing (0.27–0.83% N) chromium-manganese austenitic steels is studied. It is shown that it is possible to ensure a favorable combination of mechanical and tribological properties in such steels by choosing the appropriate chemical composition and aging mode.

Keywords

Austenite Wear Resistance Friction Factor Abrasive Wear Tribological Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ts. Rashev, High-Nitrogen Steels. Pressure Metallurgy, Bulgarian Acad. Sci., Sofia (1995).Google Scholar
  2. 2.
    O. A. Bannykh, V. M. Blinov, I. L. Poimenov, and G. A. Kuvshinov, “Effect of heat treatment on the structure and properties of nonmagnetic high-nitrogen steels obtained with the use of backpressure casting,” Izv. Akad. Nauk SSSR, Metally, No. 4, 80–85 (1982).Google Scholar
  3. 3.
    I. N. Bogachev, Cavitation Fracture and Cavitation-Resistant Alloys [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  4. 4.
    U. R. Lenel and B. R. Knott, “Structure and properties of corrosion and wear resistant Cr-Mn-N Steels,” Metall. Trans., 18A(5), 847–855 (1987).Google Scholar
  5. 5.
    W. J. Schumacher, “Stainless steel alternative to cobalt alloys,” Chem. Eng., 88(19), 149–152 (1981).Google Scholar
  6. 6.
    L. G. Korshunov, Yu. N. Goikhenberg, N. A. Tereshchenko, et al., “Wear resistance and structure of the surface layer of nitrogen-bearing stainless austenitic steels under friction and abrasive impact,” Fiz. Met. Metalloved., 84(5), 137–149 (1997).Google Scholar
  7. 7.
    F. P. Bowden and D. Tabor, Friction and Lubrication of Solids [Russian translation], Mashinostroenie, Moscow (1968).Google Scholar
  8. 8.
    Yu. N. Goikhenberg, D. A. Mirzaev, V. A. Mirmel’shtein, et al., “Structure and corrosive-mechanical properties of vanadium-alloyed high-nitrogen Cr-Mn steels hardened by aging and cold deformation,” Fiz. Met. Metalloved., No. 8, 176–182 (1981).Google Scholar
  9. 9.
    D. Buckley, Surface Phenomena under Adhesion and Friction Interaction [Russian translation], Mashinostroenie, Moscow (1986).Google Scholar
  10. 10.
    L. G. Korshunov, “Structural transformations due to friction and wear resistance of austenitic steels,” Fiz. Met. Metalloved., No. 8, 3–21 (1992).Google Scholar
  11. 11.
    A. V. Makarov, L. G. Korshunov, V. M. Chernenko, and N. L. Chernenko, “Wear resistance and structural changes of surface layer of nitrogen-bearing high-chromium steels of martensitic class under abrasive impact and sliding friction,” Fiz. Met. Metalloved., 86, 104–114 (1998).Google Scholar
  12. 12.
    V. G. Gavrilyuk, V. A. Druz, S. P. Efimenko, and O. G. Kvasnevskii, “Interaction between carbon and nitrogen atoms and dislocations in austenite,” Fiz. Met. Metalloved., 64(6), 1132–1135 (1987).Google Scholar
  13. 13.
    V. Gerold and H. P. Karnthaler, “On the origin of planar slip in F.C.C. alloys,” Acta Metall., 47(8), 2177–2183 (1989).Google Scholar
  14. 14.
    M. L. Byrnes, M. Crujicic, and W. S. Owen, “Nitrogen strengthening of a stable austenitic stainless steel,” Acta Metall., 35(7), 1853–1862 (1987).CrossRefGoogle Scholar
  15. 15.
    L. G. Korshunov, A. V. Makarov, and N. L. Chernenko, “Ultrafine structures formed upon friction and their effect on the tribological properties of steels,” Phys. Met. Metallogr., 90, Suppl. 1, 548–558 (2000).Google Scholar
  16. 16.
    J. H. Dumbleton and J. A. Douthe, “The unlubricated adhesive wear resistance of metastable austenitic stainless steels containing silicon,” Wear, 42, 305–332 (1977).CrossRefGoogle Scholar
  17. 17.
    L. G. Korshunov, Yu. N. Goikhenberg, and N. L. Chernenko, “Effect of silicon on the structure and tribological and mechanical properties of nitrogen-bearing chromium-manganese austenitic steels,” Fiz. Met. Metalloved., 96(5), 100–110 (2003).Google Scholar
  18. 18.
    Yu. N. Goikhenberg, L. G. Zhuravlev, V. E. Vnukov, et al., “Effect of decomposition of austenite on corrosion cracking and properties of chromium-manganese steels with nitrogen,” Fiz. Met. Metalloved., No. 1, 99–107 (1990).Google Scholar
  19. 19.
    L. G. Korshunov, Yu. N. Goikhenberg, and N. L. Chernenko, “Effect of discontinuous decomposition on tribological properties of high-nitrogen chromium-manganese austenitic steel G22Kh18A0.80,” Fiz. Met. Metalloved., 90(2), 107–114 (2000).Google Scholar
  20. 20.
    L. G. Korshunov, N. L. Chernenko, N. A. Tereshchenko, and A. I. Uvarov, “Effect of aging on tribological and mechanical properties of nitrogen-bearing stainless austenitic steel,” Fiz. Met. Metalloved., 99(1), 99–109 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • L. G. Korshunov
    • 1
  • Yu. N. Goikhenberg
    • 2
  • N. K. Chernenko
    • 1
  1. 1.Institute for Metals Physics of the Ural Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.South Ural State UniversityChelyabinskRussia

Personalised recommendations