Advertisement

Metal Science and Heat Treatment

, Volume 47, Issue 11–12, pp 507–511 | Cite as

Effect of austenite deformation and chemical composition on the microstructure and hardness of low-carbon and ultralow-carbon bainitic steels

  • P. P. Suikkanen
  • J. I. Kömi
  • L. P. Karjalainen
Article

Abstract

The effect of hot deformation and chemical composition on the microstructure and hardness of experimental grades of low-carbon and ultralow-carbon C-Mn-Mo-Nb-B steels is studied by the method of physical simulation. It is shown that deformation of austenite at a temperature below that of recrystallization leads to formation of polygonal ferrite and high-temperature ferrite with bainitic morphology. The effect is the most pronounced in boron-bearing steels. Simultaneous alloying with Mo, Nb, and B seems to be the most effective for ensuring high hardness.

Keywords

Microstructure Ferrite Austenite Recrystallization Transport Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Yang, C. Y. Huang, and S. C. Wang, Mater. & Design, 13(6), 335–338 (1992).CrossRefGoogle Scholar
  2. 2.
    C. Mesplont, T. Waterschoot, S. Vandeputte, et al., “Hot rolled bainitic steels,” in: Thermomechanical Processing of Steels, 24–26 May 2000, IOM Communications, London (2000), pp. 495–504.Google Scholar
  3. 3.
    G. Buzzichelli and E. Anelli, “Present status and perspectives of European research in the field of advanced structural steels,” ISIJ Int., 42(12), 1354–1363 (2002).Google Scholar
  4. 4.
    I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth and Co., London (1998), pp. 1–248.Google Scholar
  5. 5.
    T. Siwecki, L. Blaz, and S. Petterson, in: HSLA Steels’2000, 30 Oct.–2 Nov. 2000, Metallurgical Industry Press, Beijing (2000), pp. 504–510.Google Scholar
  6. 6.
    D. Q. Bai, S. Yue, T. Maccagno, and J. J. Jonas, ISIJ Int., 36(8), 1084–1093 (1996).Google Scholar
  7. 7.
    T. Araki (ed.), Atlas for Bainitic Microstructures, Vol. 1, Continuous cooled Zw-Microstructures of Low Carbon Steels, Iron and Steel Institute, Tokyo (1992), pp. 1–165.Google Scholar
  8. 8.
    P. A. Monohar, T. Chandra, and C. R. Killmore, ISIJ Int., 36(12), 1486–1492 (1996).Google Scholar
  9. 9.
    K. Fujiwara and S. Okakuchi, in: Microalloying in Steels, 7–9 Sept. 1998, Donostia-San Sebastian, Spain, Trans. Tech. Publ. Ltd. (1998), pp. 271–278.Google Scholar
  10. 10.
    P. Cizek, B. P. Wynne, C. H. J. Davies, et al., Metall. Trans. A, 33A, 1331–1349 (2002).Google Scholar
  11. 11.
    W. B. Lee, S. G. Hong, C. G. Park, et al., in: Thermomechanical Processing of Steel, 24–26 May 2000, IOM Communications, London (2000), pp. 159–167.Google Scholar
  12. 12.
    J. G. Williams, C. R. Killmore, P. D. Edwards, and P. G. Kelly, Thermec’97, Int. Conf. Thermomechanical Processing of Steels and Other Materials, TMS (1997), pp. 475–478.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • P. P. Suikkanen
    • 1
    • 2
  • J. I. Kömi
    • 1
    • 2
  • L. P. Karjalainen
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of OuluOuluFinland
  2. 2.Rautaruukki OyjRaaheFinland

Personalised recommendations