Advertisement

Corrosion Cracking of Zirconium Cladding Tubes. A Review. 2. Effect of External Factors, Structure, and Properties of the Alloys

  • S. A. Nikulin
  • A. B. Rozhnov
Corrosion

Abstract

Data on the effect of various external factors (applied loads, iodine concentration, temperature, irradiation), structure, and properties (strength, state of the surface, residual stresses, and hydrogen charging) of zirconium alloys on the mechanisms of and resistance to stress corrosion cracking (SCC) of zirconium cladding tubes primarily in iodine-bearing media are presented.

Keywords

Hydrogen Zirconium Iodine Residual Stress Applied Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    A. S. Zaimovskii, A. V. Nikulina, and N. G. Reshetnikov, Zirconium Alloys in the Nuclear Power Industry [in Russian], Energoizdat, Moscow (1981).Google Scholar
  2. 2.
    N. M. Beskorovainy, B. A. Kalin, P. A. Platonov, and I. I. Chernov, Structural Materials for Nuclear Reactors [in Russian], Energoatomizdat, Moscow (1985).Google Scholar
  3. 3.
    F. G. Reshetnikov, Yu. K. Bibilashvili, I. S. Golovnin, et al., Development, Production, and Operation of Fuel Elements of Power Reactors, Book 1 [in Russian], Energoizdat, Moscow (1995).Google Scholar
  4. 4.
    F. G. Reshetnikov, Yu. K. Bibilashvili, I. S. Golovnin, et al., Development, Production, and Operation of Fuel Elements of Power Reactors, Book 2 [in Russian], Energoizdat, Moscow (1995).Google Scholar
  5. 5.
    B. Cox, Corrosion, 29, 157–168 (1973).Google Scholar
  6. 6.
    B. Cox and J. Wood, “Iodine induced cracking of zircaloy fuel cladding,” in: Corrosion Problems in Energy Conversion and Generation (1974), p. 275.Google Scholar
  7. 7.
    P. K. De, K. Elayaperumal, and J. Balachandra, S.A.E.S.T. Trans., 5, 15–25 (1970).Google Scholar
  8. 8.
    B. Cox, Corrosion, 28, 207–224 (1972).Google Scholar
  9. 9.
    M. I. Solonin, “Requirements to Materials and Technologies of New Generation. Prospects of Creation,” in: Rep. 4th Workshop of the Ministry for Nuclear Power of Russia “Use of Achievements of Fundamental Studies in Nuclear Technology” [in Russian] (2003), p. 7.Google Scholar
  10. 10.
    S. A. Nikulin and A. B. Rozhnov, “Corrosion cracking of zirconium cladding tubes. A Review, Part 1. Methods of Study and Mechanisms of Fracture,” Metalloved. Term. Obrab. Met., No. 2, 31–39 (2005).Google Scholar
  11. 11.
    Yu. V. Solov'ev, G. S. Bulatov, and K. N. Gedgovd, “Mechanical properties and stress corrosion cracking of zirconium alloys,” Materiallovedenie, No. 4, 19–27 (2000).Google Scholar
  12. 12.
    D. B. Knorr, J. M. Peltier, and R. M. Pelloux, “Influence of crystallographic texture and test temperature on initiation and propagation of iodine stress-corrosion cracks in Zircaloy,” in: Zirconium in the Nuclear Industry, 6th Int. Symp., ASTM STP 824 (1984), pp. 627–652.Google Scholar
  13. 13.
    B. Cox and J. Wood, “The mechanism of SCC of zirconium alloys in halogens,” in: Proc. Int. Conf. on Mechanisms of Environmentally Assisted Cracking of Materials, University of Surrey, April 4–7, 1977 (Metals Society, London, 1977), pp. 520–530.Google Scholar
  14. 14.
    A. B. Rozhnov, Effect of Structural Factors on Stress Corrosion Cracking of Thin-Wall Pipes from Zirconium Alloys, Author's Abstract of Candidate's Thesis [in Russian], MISiS, Moscow (2004).Google Scholar
  15. 15.
    S. A. Nikulin, V. G. Khanzhin, A. B. Rozhnov, et al., “Stress corrosion cracking of zirconium alloys in iodine containing environment: mechanisms, kinetics and influence of structural factors,” in: 7th Int. Conf. “Machine Building Techniques and Technology” (AMTECH 2003), 3–5 October, 2003, Varna, Bulgaria, Vol. 2, pp. 11–17.Google Scholar
  16. 16.
    P. Jacques, F. Lefevbre, and C. Lemaignan, “Deformation-corrosion interaction for Zr alloys during ISCC crack initiations. Part 1. Chemical Contributions,” J. Nuclear Mater., 264, 239–248 (1999).CrossRefGoogle Scholar
  17. 17.
    R. E. Haddad and A. O. Dorado, “Grain-by-grain study of the mechanisms of crack propagation during iodine stress corrosion cracking of Zircaloy-4,” in: 10th Int. Symp. “Zirconium in the Nuclear Industry,” ASTM STP 1245 (1994), pp. 559–575.Google Scholar
  18. 18.
    E. Ciocan, M. Ignat, and E. Gheorghiu, “The effect of the cracking plane crystallographic orientation on the stress corrosion cracking process,” J. Nuclear Mater., 225, 1–13 (1998).CrossRefGoogle Scholar
  19. 19.
    I. C. Wood, “Factors affecting stress corrosion cracking of Zircaloy in iodine vapor,” J. Nuclear Mater., 45, 105 (1972).CrossRefGoogle Scholar
  20. 20.
    C. E. Ells, Can. Metall. Soc. Annual, 17, 32–41 (1978).Google Scholar
  21. 21.
    Iodine Induced Stress Corrosion Cracking of Zircaloy Fuel Cladding Materials, International Atomic Energy Agency, IAEA-TECDOC-1185, November (2000).Google Scholar
  22. 22.
    M. Fregonese, F. L. Lefebvre, C. Lemaignan, and T. Magnin, “Influence of recoil-implanted and thermally released iodine on ISCC of Zircaloy in PCI-conditions: chemical aspects,” J. Nuclear Mater., 265, 245–254 (1999).CrossRefGoogle Scholar
  23. 23.
    P. S. Sidky, “Iodine stress corrosion cracking of zircaloy reactor cladding: iodine chemistry (a review),” J. Nucl. Mater., 256, 1–17 (1998).CrossRefGoogle Scholar
  24. 24.
    S. B. Farina, G. S. Duffo, and J. R. Galvele, “Stress corrosion cracking of zirconium and Zircaloy-4 in iodine containing solutions,” in: CORROSION/2002, 57th Annual Conf. & Exposition, 7–12 April, 2002, Denver, USA, NACE International Paper No. 02436.Google Scholar
  25. 25.
    S. Ikeda, “Stress corrosion cracking behavior of Zircaloy-2 in iodine environment,” Trans. Natl. Res. Inst. Met., 27(3), 13–17 (1985).Google Scholar
  26. 26.
    L. V. Bogoyavlenskii, A. V. Filimonov, and A. P. Shevtsov, “Corrosion cracking of zirconium alloys in water with added iron chloride,” Zashchita Met., 17(3), 259–265 (1981).Google Scholar
  27. 27.
    P. Hofman, “Influence of iodine on the strain and rupture behavior of Zircaloy-4 cladding tubes at high temperatures,” in: 4th Conf. “Zirconium in the Nuclear Industry,” ASTM ATP 681 (1979), pp. 409–428.Google Scholar
  28. 28.
    V. V. Novikov, “Mechanism of iodine cracking of zirconium claddings,” At. Energ., 71, Issue 1, 33–38 (1991).CrossRefGoogle Scholar
  29. 29.
    Yu. K. Bibilashvili, A. V. Medvedev, B. I. Nesterov, et al., “Influence of irradiation on K ISCC of Zr-1% Nb claddings,” J. Nucl. Mater., 280, 106–110 (2000).CrossRefGoogle Scholar
  30. 30.
    Yu. K. Bibilashvili, Yu. N. Dolgov, B. J. Nesterov, and V. V. Novikov, “Propagation of stress corrosion cracks in Zr-1% Nb claddings,” J. Nucl. Mater., 224, 307–310 (1995).CrossRefGoogle Scholar
  31. 31.
    I. Schuster, C. Lemaingnan, and J. Joseph, “Testing and modeling the influence of irradiation on iodine-induced stress corrosion cracking of Zircaloy-4,” Nucl. Eng. Des., 156, 343–349 (1995).CrossRefGoogle Scholar
  32. 32.
    S. Shimada and M. A. Nagai, “Fractographic study of iodine-induced stress corrosion cracking in irradiated Zircaloy-2 cladding,” J. Nucl. Mater., 114, North-Holland Publishing Company, 222–230 (1983).CrossRefGoogle Scholar
  33. 33.
    S. B. Goryachev, A. R. Gritsyuk, P. F. Prosolov, et al., “Iodine-induced SCC of Zr alloys at constant strain rate,” J. Nucl. Mater., 199, 50–60 (1992).CrossRefGoogle Scholar
  34. 34.
    B. Cox, “Pellet-clad interaction (PCI) failures of zirconium alloy fuel claddings. A Review, J. Nucl. Mater., 172, 249–292 (1990).CrossRefGoogle Scholar
  35. 35.
    I. Schuster and C. Lemaingnan, “Influence of texture on iodine-induced stress corrosion cracking of Zircaloy-4 cladding tubes,” J. Nucl. Mater., 189, 157–166 (1992).CrossRefGoogle Scholar
  36. 36.
    V. I. Perekhozhev, A. N. Timokhin, A. V. Matveev, et al., “Effect of iron admixture on local corrosion of alloy Zr-1% Nb,” Voprosy Atom. Nauki Tekh., Ser. Atom. Materialoved., Issue 3(26), 14–18 (1987).Google Scholar
  37. 37.
    F. Garzarolli, E. Steinberg, and H. Weidinger, in: Zirconium in the Nuclear Industry, 4th Conf., ASTM STP 681 (1979), pp. 101–106.Google Scholar
  38. 38.
    S. A. Nikulin, V. G. Khanzhin, and A. B. Rozhnov, “Effect of the strength of zirconium alloys on the mechanisms and kinetics of stress corrosion cracking,” in: Abs. Rep. VII Russian Conf. on the Reactor Materials Science, 8–12 Sept. 2003, Dimitrovgrad [in Russian], p. 173.Google Scholar
  39. 39.
    S. A. Nikulin, V. G. Khanzhin, A. B. Rozhnov, and M. M. Peregud, “Effect of hardening of zirconium alloys on SCC in iodine-bearing environment,” in: Abs. Rep. 2nd Eurasia Workshop “Strength of Heterogeneous Structures” 20–22 April, 2004 [in Russian], MISiS, Moscow (2004), p. 25.Google Scholar
  40. 40.
    B. Cox, “Environmentally-induced cracking of zirconium alloy, a review,” J. Nucl. Mater., 170, 1–23 (1990).CrossRefGoogle Scholar
  41. 41.
    T. Kubo, Y. Wakashima, H. Imashi, and M. Nagai, “Distribution of intermetallic particles and its effects on SCC of zirconium alloys,” J. Nucl. Mater., 138, 256–267 (1980).CrossRefGoogle Scholar
  42. 42.
    A. Garlick and P. D. Wonlfenden, Ibid., 41, 64 (1971).CrossRefGoogle Scholar
  43. 43.
    K. Videm, in: Int. Nucl. Indistr. Fair, Tech. Meeting, No. 6/11, Basel, Switzerland (1975).Google Scholar
  44. 44.
    S. A. Nikulin, V. G. Khanzhin, A. B. Rozhnov, et al., “AE-monitoring of iodine corrosion cracking of zirconium alloys: effect of chemical composition and microstructure,” in: Mater. Workshop of Materials Science Societies of Russia “New Functional Materials and Ecology,” Zvenigorod, 26–29 Nov. [in Russian], (2002), pp. 111–112.Google Scholar
  45. 45.
    S. A. Nikulin, V. G. Khanzhin, and A. B. Rojnov, “Application of an acoustic emission method for SCC testing of zirconium cladding tubes,” in: CORROSION/2002, 57th Int. Annual Conf. and Exposition, 7–12 April, 2002, Denver, USA, NACE International, Paper No. 02437.Google Scholar
  46. 46.
    S. A. Nikulin, V. G. Khanzhin, A. B. Rozhnov, and P. O. Skorobogatov, “Effect of the structure of zirconium alloys on resistance to SCC in iodine-bearing environment,” in: Coll. Works Sci. Session MIFI 2002, Science and Innovation Cooperation Workshop, Part 1 [in Russian] (2002), pp. 170–171.Google Scholar
  47. 47.
    K. Norring, Y. Haag, and C. Wikstrom, “Propagation of stress-corrosion cracks in unirradiated zircaloy,” J. Nucl. Mater., 105, 231–236 (1982).CrossRefGoogle Scholar
  48. 48.
    R. Haddard and B. Cox, “On the initiation of cracks in zircaloy tubes by I2 and Sc/Cd vapours,” J. Nucl. Mater., 138, 81–88 (1986).CrossRefGoogle Scholar
  49. 49.
    B. C. Syrett, D. Cubiccotti, and R. L. Jones, “The origin of variations in the iodine stress corrosion cracking susceptibility of commercial zircaloy-2 tubings,” J. Nucl. Mater., 92, 89–102 (1980).CrossRefGoogle Scholar
  50. 50.
    S. B. Goryachev, A. K. Gritsuk, and M. G. Snegirev, “Texture effect on stress corrosion cracking of zirconium alloys in iodine environment,” in: Program and Abs. 13th Int. Symp. on Zirconium in the Nuclear Industry, June 10–14, 2001, Annecy, France, p. 108.Google Scholar
  51. 51.
    D. B. Knot, R. M. Pelloux, L. F. P. Van Swam, “Effects of material condition on the iodine SCC susceptibility of Zircaloy-2 cladding,” J. Nucl. Mater., 110, 230–245 (1982).CrossRefGoogle Scholar
  52. 52.
    E. Smith, “The effect of the inner surface texture on the stress corrosion cracking susceptibility of Zircaloy cladding,” J. Nucl. Mater., 89, 87–91 (1980).CrossRefGoogle Scholar
  53. 53.
    V. V. Gerasimova, “Corrosion cracking and nodule corrosion of zirconium alloys,” Voprosy Atom. Nauki Tekh., Ser. Atom. Materialoved., Issue 3(26), 18–24 (1987).Google Scholar
  54. 54.
    B. Cox and R. Haddad, “Methyl iodide as a promoter of the SCC of zirconium alloys in iodine vapor,” J. Nucl. Mater., 137, 115–123 (1986).CrossRefGoogle Scholar
  55. 55.
    H. G. Logan, Stress Corrosion of Metals [Russian translation], Metallurgiya, Moscow (1970).Google Scholar
  56. 56.
    J. Van de Velde, in: LHMA-services to the nuclear industry, Madrid, Spain, 23–26 Sept. (1991), pp. 181–200.Google Scholar
  57. 57.
    H. Nagano and H. Kajimura, Corrosion Sci., 38(5), 781–791 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. A. Nikulin
    • 1
  • A. B. Rozhnov
    • 1
  1. 1.Moscow State Institute for Steel and AlloysTechnological UniversityMoscowRussia

Personalised recommendations