Advertisement

Anti-Kählerian Geometry on Lie Groups

  • Edison Alberto Fernández-Culma
  • Yamile Godoy
Article

Abstract

Let G be a Lie group of even dimension and let (g, J) be a left invariant anti-Kähler structure on G. In this article we study anti-Kähler structures considering the distinguished cases where the complex structure J is abelian or bi-invariant. We find that if G admits a left invariant anti-Kähler structure (g, J) where J is abelian then the Lie algebra of G is unimodular and (G, g) is a flat pseudo-Riemannian manifold. For the second case, we see that for any left invariant metric g for which J is an anti-isometry we obtain that the triple (G, g, J) is an anti-Kähler manifold. Besides, given a left invariant anti-Hermitian structure on G we associate a covariant 3-tensor 𝜃 on its Lie algebra and prove that such structure is anti-Kähler if and only if 𝜃 is a skew-symmetric and pure tensor. From this tensor we classify the real 4-dimensional Lie algebras for which the corresponding Lie group has a left invariant anti-Kähler structure and study the moduli spaces of such structures (up to group isomorphisms that preserve the anti-Kähler structures).

Keywords

Anti-Hermitian geometry Norden metrics B-manifolds Anti-Kähler manifold Lie groups Abelian complex structure Bi-invariant complex structure 

Mathematics Subject Classification (2010)

22F30 22F50 53C50 32M10 53C55 53C15 53C56 

Notes

Acknowledgements

The authors wish to extend their sincerest appreciation and thanks to Isabel Dotti and Marcos Salvai for their corrections, comments and constructive criticisms.

References

  1. 1.
    Andrada, A., Barberis, M.L., Dotti, I.: Classification of abelian complex structures on 6-dimensional Lie algebras. J. Lond. Math. Soc. 83(1), 232–255 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andrada, A., Barberis, M.L., Dotti, I.: Corrigendum: Classification of abelian complex structures on six-dimensional Lie algebras. J. Lond. Math. Soc. 87 (2), 319–320 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barberis, M.L., Dotti, I., Miatello, R.: On certain locally homogeneous Clifford manifolds. Ann. Glob. Anal. Geom. 13(3), 289–301 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borowiec, A., Ferraris, M., Francaviglia, M., Volovich, I.: Almost-complex and almost-product Einstein manifolds from a variational principle. J. Math. Phys. 40(7), 3446–3464 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borowiec, A., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds. Differential Geometry and its Applications 12(3), 281–289 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Castro, R., Hervella, L.M., García-Rio, E.: Some examples of almost complex manifolds with Norden metric. Rivista di Matematica della Università di Parma Serie 4 15, 133–141 (1989)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Değirmenci, N., Karapazar, Ş: Spinors on Kähler-Norden manifolds. J. Nonlinear Math. Phys. 17(1), 27–34 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Değirmenci, N., Karapazar, Ş: Schrödinger-lichnerowicz like formula on Kähler-Norden manifolds. Int. J. Geom. Meth. Mod. Phys. 9(1), 1250010 (14 pages) (2012)zbMATHGoogle Scholar
  9. 9.
    Ganchev, G.T., Borisov, A.W.: Note on the almost complex manifolds with Norden Metric. Comptes rendus de l’Académie Bulgare des Sciences 39(5), 31–34 (1986)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gribachev, K.I., Mekerov, D.G., Djelepov, G.D.: Generalized B-manifold. Comptes rendus de l’Académie Bulgare des Sciences 38(3), 299–302 (1985)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Harvey, F.R.: Spinors and calibrations perspectives in mathematics, vol. 9, 1st edn. Academic Press, Boston (1990)Google Scholar
  12. 12.
    İşcan, M., Salimov, A.A.: On Kähler-Norden manifolds. Proc. Math. Sci. 119(1), 71–80 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Manev, M.: Classes of real isotropic hypersurfaces of a Kähler manifold with B-metric. Comptes rendus de l’Académie Bulgare des Sciences 55(4), 27–32 (2002)zbMATHGoogle Scholar
  14. 14.
    Mekerov, D.: Connection with parallel totally skew-symmetric torsion on almost complex manifolds with Norden metric. Comptes rendus de l’Académie Bulgare des Sciences 62(12), 1501–1508 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mekerov, D.: On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric. Comptes rendus de l’Académie Bulgare des Sciences 63(1), 19–28 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nannicini, A.: Generalized geometry of Norden manifolds. J. Geom. Phys. 99, 244–255 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Olszak, K.: On the Bochner conformal curvature of Kähler-Norden manifolds. Central European Journal of Mathematics 3(2), 309–317 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Słuka, K.: On Kähler manifolds with Norden metrics. Analele Ştiinţifice ale Universităţii “Alexandru Ioan cuza” din Iaşi. Matematică. Tomul XLVII f. 1, 105–122 (2001)zbMATHGoogle Scholar
  19. 19.
    Słuka, K.: On the curvature of Kähler-Norden manifolds. J. Geom. Phys. 54(2), 131–145 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Teofilova, M.: Lie groups as Kähler manifolds with Killing Norden metric. Comptes rendus de l’Académie Bulgare des Sciences 65(6), 733–742 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, H.C.: Complex parallelisable manifolds. Proc. Am. Math. Soc. 5(5), 771–776 (1954)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Edison Alberto Fernández-Culma
    • 1
  • Yamile Godoy
    • 1
  1. 1.CIEM - FaMAFCONICET - Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations