Sasakian and Parabolic Higgs Bundles

Article

Abstract

Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G–Higgs bundles over M and the class of parabolic (or equivalently, ramified) G–Higgs bundles over the base N.

Keywords

Sasakian manifold Higgs bundle Parabolic structure Ramified bundle 

Mathematics Subject Classification (2010)

Primary: 14P25, 57M05, 14F35, 20F65 Secondary: 57M50, 57M07, 20F67 

Notes

Acknowledgements

We thank the referees for their helpful comments. The authors acknowledge the support of their respective J. C. Bose Fellowships.

References

  1. 1.
    Balaji, V., Biswas, I., Nagaraj, D.S.: Principal bundles over projective manifolds with parabolic structure over a divisor. Tôhoku Math. Jour. 53, 337–367 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balaji, V., Biswas, I., Nagaraj, D.S.: Ramified G-bundles as parabolic bundles. J. Ramanujan Math. Soc. 18, 123–138 (2003)MathSciNetMATHGoogle Scholar
  3. 3.
    Biswas, I.: Connections on a parabolic principal bundle, II. Canadian Math. Bull. 52, 175–185 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Biswas, I.: Parabolic principal Higgs bundles. J. Ramanujan Math. Soc. 23, 311–325 (2008)MathSciNetMATHGoogle Scholar
  5. 5.
    Biswas, I., Schumacher, G.: Vector bundles on Sasakian manifolds. Adv. Theo. Math. Phy. 14, 541–561 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Biswas, I., Mj, M.: Higgs bundles on Sasakian manifolds, to appear in Int. Math. Res. Not. 2017,  https://doi.org/10.1093/imrn/rnw329. arXiv:1607.07351
  7. 7.
    Boyer, C.P., Galicki, K.: Sasakian geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)MATHGoogle Scholar
  8. 8.
    Kawamata, Y.: Characterization of abelian varieties. Compositio Math. 43, 253–276 (1981)MathSciNetMATHGoogle Scholar
  9. 9.
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985, 283–360, Adv. Stud Pure Math., 10, North-Holland, Amsterdam (1987)Google Scholar
  10. 10.
    Nori, M.V.: On the representations of the fundamental group. Compositio Math. 33, 29–41 (1976)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations