Sasakian and Parabolic Higgs Bundles

  • Indranil Biswas
  • Mahan Mj


Let M be a quasi-regular compact connected Sasakian manifold, and let N = M/S 1 be the base projective variety. We establish an equivalence between the class of Sasakian G–Higgs bundles over M and the class of parabolic (or equivalently, ramified) G–Higgs bundles over the base N.


Sasakian manifold Higgs bundle Parabolic structure Ramified bundle 

Mathematics Subject Classification (2010)

Primary: 14P25, 57M05, 14F35, 20F65 Secondary: 57M50, 57M07, 20F67 



We thank the referees for their helpful comments. The authors acknowledge the support of their respective J. C. Bose Fellowships.


  1. 1.
    Balaji, V., Biswas, I., Nagaraj, D.S.: Principal bundles over projective manifolds with parabolic structure over a divisor. Tôhoku Math. Jour. 53, 337–367 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Balaji, V., Biswas, I., Nagaraj, D.S.: Ramified G-bundles as parabolic bundles. J. Ramanujan Math. Soc. 18, 123–138 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Biswas, I.: Connections on a parabolic principal bundle, II. Canadian Math. Bull. 52, 175–185 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Biswas, I.: Parabolic principal Higgs bundles. J. Ramanujan Math. Soc. 23, 311–325 (2008)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Biswas, I., Schumacher, G.: Vector bundles on Sasakian manifolds. Adv. Theo. Math. Phy. 14, 541–561 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Biswas, I., Mj, M.: Higgs bundles on Sasakian manifolds, to appear in Int. Math. Res. Not. 2017, arXiv:1607.07351
  7. 7.
    Boyer, C.P., Galicki, K.: Sasakian geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford (2008)zbMATHGoogle Scholar
  8. 8.
    Kawamata, Y.: Characterization of abelian varieties. Compositio Math. 43, 253–276 (1981)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the Minimal Model Problem, Algebraic Geometry, Sendai, 1985, 283–360, Adv. Stud Pure Math., 10, North-Holland, Amsterdam (1987)Google Scholar
  10. 10.
    Nori, M.V.: On the representations of the fundamental group. Compositio Math. 33, 29–41 (1976)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations