Advertisement

On an Algebraic Property of the Disordered Phase of the Ising Model with Competing Interactions on a Cayley Tree

  • Farrukh Mukhamedov
  • Abdessatar Barhoumi
  • Abdessatar Souissi
Article

Abstract

It is known that the disordered phase of the classical Ising model on the Caley tree is extreme in some region of the temperature. If one considers the Ising model with competing interactions on the same tree, then about the extremity of the disordered phase there is no any information. In the present paper, we first aiming to analyze the correspondence between Gibbs measures and QMC’s on trees. Namely, we establish that states associated with translation invariant Gibbs measures of the model can be seen as diagonal quantum Markov chains on some quasi local algebra. Then as an application of the established correspondence, we study some algebraic property of the disordered phase of the Ising model with competing interactions on the Cayley tree of order two. More exactly, we prove that a state corresponding to the disordered phase is not quasi-equivalent to other states associated with translation invariant Gibbs measures. This result shows how the translation invariant states relate to each other, which is even a new phenomena in the classical setting. To establish the main result we basically employ methods of quantum Markov chains.

Keywords

Quantum Markov chain Cayley tree Ising type model Competing interaction Quasi-equivalence Disordered phase 

Mathematics Subject Classifications (2010)

46L53 60J99 46L60 60G50 82B10 81Q10 94A17 

References

  1. 1.
    Accardi, L.: On the noncommutative Markov property. Funct. Anal. Appl. 9, 1–8 (1975)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. J. Funct. Anal. 45, 245–273 (1982)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Accardi, L., Fidaleo, F.: Quantum Markov fields. Infin. Dim. Analysis, Quantum Probab. Related Topics 6, 123–138 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Accardi, L., Fidaleo, F.: Non homogeneous quantum Markov states and quantum Markov fields. J. Funct. Anal. 200, 324–347 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Accardi, L., Fidaleo, F.: On the structure of quantum Markov fields. In: Freudenberg, W. (ed.) Proceedings Burg Conference 15–20 March 2001. QP–PQ Series 15, pp. 1–20. World Scientific, Singapore (2003)Google Scholar
  6. 6.
    Accardi, L., Fidaleo, F., Mukhamedov, F.: Markov states and chains on the CAR algebra. Infin. Dim. Analysis, Quantum Probab. Related Topics 10, 165–183 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Accardi, L., Frigerio, A.: Markovian cocycles. Proc. Royal Irish Acad. 83A, 251–263 (1983)MathSciNetMATHGoogle Scholar
  8. 8.
    Accardi, L., Mukhamedov, F., Saburov, M.: On Quantum Markov Chains on Cayley tree I: uniqueness of the associated chain with XY-model on the Cayley tree of order two. Infin. Dim. Analysis, Quantum Probab. Related Topics 14, 443–463 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Accardi, L., Mukhamedov, F., Saburov, M.: Uniqueness of quantum Markov chains associated with an XY-model on the Cayley tree of order 2. Math. Notes 90, 8–20 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three. Ann. Henri Poincare 12, 1109–1144 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Accardi, L., Mukhamedov, F., Saburov, M.: On quantum Markov chains on Cayley tree III: Ising model. J. Stat. Phys. 157, 303–329 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Accardi, L., Ohno, H., Mukhamedov, F.: Quantum Markov fields on graphs. Infin. Dim. Analysis, Quantum Probab. Related Topics 13, 165–189 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bleher, P.M.: Extremity of the disordered phase in the Ising model on the Bethe lattice. Commun. Math. Phys. 128, 411–419 (1990)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York (1987)CrossRefMATHGoogle Scholar
  15. 15.
    Dobrushin, R.L.: Description of Gibbsian Random fields by means of conditional probabilities. Probab. Theory Appl. 13, 201–229 (1968)MATHGoogle Scholar
  16. 16.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Ground states of VBS models on Cayley trees. J. Stat. Phys. 66, 939–973 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fannes, M., Nachtergaele, B., Werner, R.F.: Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ganikhodzhaev, N.N., Rozikov, U.A.: On Ising model with four competing interactions on cayley tree. Math. Phys. Anal. Geom. 12, 141–156 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Georgi, H.-O.: Gibbs Measures and Phase Transitions, de Gruyter Studies in Math, vol. 9. Walter de Gruyter, Berlin (1988)Google Scholar
  20. 20.
    Gandolfo, D., Haydarov, F.H., Rozikov, U.A., Ruiz, J.: New phase transitions of the Ising model on Cayley trees. J. Stat. Phys. 153, 400–411 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ioffe, D.: On the Extremality of the Disordered State for the Ising Model on the Bethe Lattice. Lett. Math. Phys. 37, 137–143 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Matsui, T.: A characterization of pure finitely correlated states. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 647–661 (1998)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Mossel, E.: Reconstruction on trees: Beating the second eigenvalue. Ann. Appl. Probab. 11, 285–300 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mossel, E.: Peres Y. Information flow on trees. In: Graphs, Morphisms and Statistical Physics, pp. 155–170. AMS (2004)Google Scholar
  25. 25.
    Mukhamedov, F.M.: Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice. Theor. Math. Phys. 123, 489–493 (2000)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Mukhamedov, F.: On factor associated with the unordered phase of λ-model on a Cayley tree. Rep. Math. Phys. 53, 1–18 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Mukhamedov, F., Barhoumi, A., Souissi, A.: Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree. J. Stat. Phys. 163, 544–567 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Mukhamedov, F., Rozikov, U.: On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras. J. Stat. Phys. 114, 825–848 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mukhamedov, F., Rozikov, U.: On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras II. J. Stat. Phys. 119, 427–446 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ohya, M., Petz, D.: Quantum Entropy and its Use. Springer, Berlin-Heidelberg-New York (1993)CrossRefMATHGoogle Scholar
  31. 31.
    Ostilli, M.: Cayley Trees and Bethe Lattices: A concise analysis for mathematicians and physicists. Physica A 391, 3417–3423 (2012)Google Scholar
  32. 32.
    Ostilli, M., Mukhamedov, F., Mendes, J.F.F.: Phase diagram of an Ising model with competitive interactions on a Husimi tree and its disordered counterpart. Physica A 387, 2777–2792 (2008)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Preston, C.: Gibbs States on Countable Sets. Cambridge University Press, London (1974)CrossRefMATHGoogle Scholar
  34. 34.
    Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Scientific, Singappore (2013)CrossRefMATHGoogle Scholar
  35. 35.
    Spitzer, F.: Markov random fields on an infinite tree. Ann. Prob. 3, 387–398 (1975)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Farrukh Mukhamedov
    • 1
    • 2
  • Abdessatar Barhoumi
    • 3
  • Abdessatar Souissi
    • 4
  1. 1.Department of Computational and Theoretical Sciences, Faculty of ScienceInternational Islamic University MalaysiaKuantanMalaysia
  2. 2.College of ScienceThe United Arab Emirates UniversityAl AinUAE
  3. 3.Department of Mathematics, Nabeul Preparatory Engineering InstituteCarthage UniversityNabeulTunisia
  4. 4.Department of Mathematics, Marsa Preparatory Institute for Scientific and Technical StudiesCarthage UniversityNabeulTunisia

Personalised recommendations