Littlewood-Paley Decomposition of Operator Densities and Application to a New Proof of the Lieb-Thirring Inequality

  • Julien Sabin


The goal of this note is to prove an analogue of the Littewood-Paley decomposition for densities of operators and to use it in the context of Lieb-Thirring inequalities.


Littlewood-Paley decomposition Lieb-Thirring inequality Density matrix 

Mathematics Subject Classification (2010)

42B15 46N50 



The author is grateful to Rupert Frank for useful discussions. Financial support from the ERC MNIQS-258023 is acknowledged.


  1. 1.
    Bove, A., Da Prato, G., Fano, G.: An existence proof for the Hartree-Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bove, A., Da Prato, G., Fano, G.: On the Hartree-Fock time-dependent problem. Commun. Math. Phys. 49, 25–33 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Burq, N., Gérard, P., Tzvetkov, N.: Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126, 569–605 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chadam, J.: The time-dependent Hartree-Fock equations with Coulomb two-body interaction. Commun. Math. Phys. 46, 99–104 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fefferman, C.: The multiplier problem for the ball. Ann. Math. 94(2), 330–336 (1971)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Frank, R.L.: Cwikel’s theorem and the CLR inequality. J. Spectr. Theory 4, 1–21 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Frank, R.L., Lieb, E.H., Seiringer, R.: Equivalence of Sobolev inequalities and Lieb-Thirring inequalities. In: XVIth International Congress on Mathematical Physics, pp 523–535. World Scientific Publications, Hackensack, NJ (2010)Google Scholar
  8. 8.
    Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces, vol. 79 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1991)Google Scholar
  9. 9.
    Keel, M., Tao, T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lieb, E.H., Thirring, W.E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Lieb, E.H., Thirring, W.E.: Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities, 269–303 (1976)Google Scholar
  13. 13.
    Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Vol. I, Vol. 137 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2013)MATHGoogle Scholar
  14. 14.
    Rumin, M.: Spectral density and Sobolev inequalities for pure and mixed states. Geom. Funct. Anal. 20, 817–844 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Stein, E.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30. Princeton University Press (1970)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Département de Mathématiques (UMR 8628), Faculté des Sciences d’OrsayUniversité Paris-SudOrsay CedexFrance

Personalised recommendations