Asymptotic and Exact Expansions of Heat Traces

  • Michał Eckstein
  • Artur Zając
Open Access


We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.


Heat traces Asymptotic expansions Spectral theory Zeta-functions General Dirichlet series 

Mathematics Subject Classification (2010)

Primary: 11M36 Secondary: 30B50 35K08 41A60 47B15 81Q10 


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Dover (2012)Google Scholar
  2. 2.
    Avramidi, I.G.: Heat kernel approach in quantum field theory. Nucl. Phys. B, Proc. Suppl. 104(1–3), 3–32 (2002). doi: 10.1016/S0920-5632(01)01593-6. Proceedings of the international meeting on quantum gravity and spectral geometryCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Bär, C.: The Dirac operator on space forms of positive curvature. Journal of the Mathematical Society of Japan 48(1), 69–83 (1996). doi: 10.2969/jmsj/04810069 CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Bär, C.: Dependence of the Dirac spectrum on the spin structure. Séminaires et Congrés 4, 17–33 (2000). Global Analysis and Harmonic Analysis, Jean Pierre Bourguignon – Thomas Branson – Oussama Hijazi (Ed.) journals/SC/2000/4/html/smf_sem-cong_4_17-33.html Google Scholar
  5. 5.
    Bertlmann, R.A.: Anomalies in Quantum Field Theory. International Series of Monographs on Physics, vol. 91. Clarendon (1996)Google Scholar
  6. 6.
    Camporesi, R., Higuchi, A.: On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 20(1), 1–18 (1996). doi: 10.1016/0393-0440(95)00042-9 CrossRefADSMathSciNetMATHGoogle Scholar
  7. 7.
    Carey, A., Sukochev, F.: Measurable operators and the asymptotics of heat kernels and zeta functions. J. Funct. Anal. 262(10), 4582–4599 (2012). doi: 10.1016/j.jfa.2012.03.008 CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras I: spectral flow. Adv. Math. 202(2), 451–516 (2006). doi: 10.1016/j.aim.2005.03.011 CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997). doi: 10.1007/s002200050126 CrossRefADSMathSciNetMATHGoogle Scholar
  10. 10.
    Chamseddine, A.H., Connes, A.: Spectral action for Robertson–Walker metrics. Commun. Math. Phys. 1210, 101 (2012). doi: 10.1007/JHEP10(2012)101 MathSciNetGoogle Scholar
  11. 11.
    Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217(1), 42–78 (2008). doi: 10.1016/j.aim.2007.06.009 CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. Journal of Noncommutative Geometry 6(2), 249–274 (2012). doi: 10.4171/JNCG/91 CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Cipriani, F., Guido, D., Isola, T., Sauvageot, J.L.: Spectral triples for the Sierpiński gasket. J. Funct. Anal. 266(8), 4809–4869 (2014). doi: 10.1016/j.jfa.2014.02.013 CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Comtet, L.: Advanced combinatorics The Art of Finite and Infinite Expansions.  10.1007/978-94-010-2196-8. Springer, Berlin (1974)Google Scholar
  15. 15.
    Connes, A.: The action functional in non-commutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)CrossRefADSMathSciNetMATHGoogle Scholar
  16. 16.
    Connes, A.: Noncommutative Geometry. Academic, New York (1995)Google Scholar
  17. 17.
    Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for S U q(2). Journal of the Institute of Mathematics of Jussieu 3 (1), 17–68 (2004). doi: 10.1017/S1474748004000027 CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001). doi: 10.1007/PL00005571 CrossRefADSMathSciNetMATHGoogle Scholar
  19. 19.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives, Colloquium Publications, vol. 55. American Mathematical Society (2008)Google Scholar
  20. 20.
    Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. GAFA 5(2), 174–243 (1995). doi: 10.1007/BF01895667 CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014). doi: 10.1090/S0894-0347-2014-00793-1 CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Copson, E.T.: Asymptotic expansions. In: No. 55 in Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1965)Google Scholar
  23. 23.
    Costin, O., Huang, M.: Behavior of lacunary series at the natural boundary. Adv. Math. 222(4), 1370–1404 (2009). doi: 10.1016/j.aim.2009.06.011 CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Dabrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podlés quantum spheres. Journal of Noncommutative Geometry 1(2), 213–239 (2007). doi: 10.4171/JNCG/5 MathSciNetGoogle Scholar
  25. 25.
    Dabrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. Comptes Rendus Mathematique 340(11), 819–822 (2005). doi: 10.1016/j.crma.2005.04.003 CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Dabrowski, L., Landi, G., Sitarz, A., Suijlekom, W.V., Várilly, J.C.: The Dirac operator on S U q(2). Commun. Math. Phys. 259(3), 729–759 (2005). doi: 10.1007/s00220-005-1383-9 CrossRefADSMATHGoogle Scholar
  27. 27.
    Dabrowski, L., Sitarz, A.: Dirac operator on the standard Podleś quantum sphere. Banach Center Publications 61, 49–58 (2003). doi: 10.4064/bc61-0-4 CrossRefMathSciNetGoogle Scholar
  28. 28.
    Eckstein, M.: Spectral action – beyond the almost commutative geometry. Ph.D. thesis, Jagiellonian University (2014)Google Scholar
  29. 29.
    Eckstein, M., Iochum, B., Sitarz, A.: Heat trace and spectral action on the standard Podleś sphere. Commun. Math. Phys. 332(2), 627–668 (2014). doi: 10.1007/s00220-014-2054-5 CrossRefADSMathSciNetMATHGoogle Scholar
  30. 30.
    Elizalde, E., Romeo, A.: Rigorous extension of the proof of zeta-function regularization. Phys. Rev. D 40(2), 436–443 (1989). doi: 10.1103/PhysRevD.40.436 CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Erdélyi, A.: Asymptotic expansions courier. Dover, New York (1956)Google Scholar
  32. 32.
    Essouabri, D., Iochum, B., Levy, C., Sitarz, A.: Spectral action on noncommutative torus. Journal of Noncommutative Geometry 2(1), 53–123 (2008). doi: 10.4171/JNCG/16 CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Fabry, E.: Sur les séries de taylor qui ont une infinité de points singuliers. Acta Math. 22(1), 65–87 (1899). doi: 10.1007/BF02417871 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Feller, W.: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York (2008)Google Scholar
  35. 35.
    Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144(1), 3–58 (1995). doi: 10.1016/0304-3975(95)00002-E CrossRefMathSciNetMATHGoogle Scholar
  36. 36.
    Fulling, S.A.: Aspects of Quantum Field Theory in Curved Spacetime. London Mathematical Society Student Texts, vol. 17. Cambridge University Press, Cambridge (1989)Google Scholar
  37. 37.
    Gayral, V., Iochum, B., Vassilevich, D.: Heat kernel and number theory on NC-torus. Commun. Math. Phys. 273(2), 415–443 (2007). doi: 10.1007/s00220-007-0194-6
  38. 38.
    Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. Journal of Noncommutative Geometry 7(4), 939–979 (2013). doi: 10.4171/JNCG/140 CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    Gilkey, P.B., Grubb, G.: Logarithmic terms in asymptotic expansions of heat operator traces. Communications in Partial Differential Equations 23(5–6), 777–792 (1998). doi: 10.1080/03605309808821365 CrossRefMathSciNetMATHGoogle Scholar
  40. 40.
    Gilkey, P.B., Toledo, D.: Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, 2nd edn.. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  41. 41.
    Guido, D., Isola, T.: Dimensions and singular traces for spectral triples, with applications to fractals. J. Funct. Anal. 203(2), 362–400 (2003). doi: 10.1016/S0022-1236(03)00230-1 CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Guido, D., Isola, T.: Dimensions and spectral triples for fractals in \(\mathbb {R}^{n}\). In: Boca, F., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics, Theta Series in Advanced Mathematics, pp. 89–108 (2005)Google Scholar
  43. 43.
    Hardy, G.H.: Divergent Series, 2nd edn.. American Mathematical Society (1991)Google Scholar
  44. 44.
    Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 18. Cambridge University Press, Cambridge (1915)Google Scholar
  45. 45.
    Hirschman, I.I., Jenkins, J.A.: On lacunary Dirichlet series. Proc. Am. Math. Soc. 1(4), 512–517 (1950). doi: 10.2307/2032321 CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Iochum, B., Levy, C., Vassilevich, D.: Global and local aspects of spectral actions. J. Phys. A Math. Theor. 45 (37), 374,020 (2012). doi: 10.1088/1751-8113/45/37/374020 CrossRefMathSciNetGoogle Scholar
  47. 47.
    Iochum, B., Levy, C., Vassilevich, D.: Spectral action beyond the weak-field approximation. Commun. Math. Phys. 316(3), 595–613 (2012). doi: 10.1007/s00220-012-1587-8 CrossRefADSMathSciNetMATHGoogle Scholar
  48. 48.
    Iochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310(2), 367–382 (2012). doi: 10.1007/s00220-011-1406-7 CrossRefADSMathSciNetMATHGoogle Scholar
  49. 49.
    Jonquiére, A.: Note sur la série \({{\sum }_{n=1}^{\infty }} \frac {x^{n}}{n^{s}}\). Bulletin de la Société Mathématique de France 17, 142–152 (1889)
  50. 50.
    Kaad, J., Senior, R.: A twisted spectral triple for quantum S U(2). J. Geom. Phys. 62(4), 731–739 (2012). doi: 10.1016/j.geomphys.2011.12.019 CrossRefADSMathSciNetMATHGoogle Scholar
  51. 51.
    Kakehi, T., Masuda, T.: Logarithmic divergence of heat kernels on some quantum spaces. Tôhoku Mathematical Journal 47(4), 595–600 (1995). doi: 10.2748/tmj/1178225463 CrossRefMathSciNetMATHGoogle Scholar
  52. 52.
    Kaneko, M., Kurokawa, N., Wakayama, M.: A variation of Euler’s approach to values of the Riemann zeta function. Kyushu Journal of Mathematics 57(1), 175–192 (2003). doi: 10.2206/kyushujm.57.175 CrossRefMathSciNetMATHGoogle Scholar
  53. 53.
    Lesch, M.: On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Ann. Glob. Anal. Geom. 17(2), 151–187 (1999). doi: 10.1023/A:1006504318696 CrossRefMathSciNetMATHGoogle Scholar
  54. 54.
    Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications. De Gruyter Studies in Mathematics, vol. 46. Walter de Gruyter (2012)Google Scholar
  55. 55.
    Mandelbrojt, S.: Séries lacunaires Actualités Scientifiques Et Industrielles, p 305, Paris (1936)Google Scholar
  56. 56.
    Mandelbrojt, S., Miles, E.R.: Lacunary functions. The Rice Institute Pamphlet 14(4), 261–284 (1927) Google Scholar
  57. 57.
    Marcolli, M., Pierpaoli, E., Teh, K.: The spectral action and cosmic topology. Commun. Math. Phys. 304(1), 125–174 (2011). doi: 10.1007/s00220-011-1211-3 CrossRefADSMathSciNetMATHGoogle Scholar
  58. 58.
    Marcolli, M., Pierpaoli, E., Teh, K.: The coupling of topology and inflation in noncommutative cosmology. Commun. Math. Phys. 309(2), 341–369 (2012). doi: 10.1007/s00220-011-1352-4 CrossRefADSMathSciNetMATHGoogle Scholar
  59. 59.
    Matsumoto, K., Weng, L.: Zeta-functions defined by two polynomials. In: Number Theoretic Methods. doi: 10.1007/978-1-4757-3675-5_13, pp. 233–262. Springer, Berlin (2002)
  60. 60.
    Neshveyev, S., Tuset, L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254(2), 323–341 (2005). doi: 10.1007/s00220-004-1154-z CrossRefADSMathSciNetMATHGoogle Scholar
  61. 61.
    Olczykowski, P., Sitarz, A.: On spectral action over Bieberbach manifolds. Acta Phys. Pol. B 42(6), 1189–1198 (2011). doi: 10.5506/APhysPolB.42.1189 CrossRefMathSciNetGoogle Scholar
  62. 62.
    Pal, A., Sundar, S.: Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres. Journal of Noncommutative Geometry 4(3), 389–439 (2010). doi: 10.4171/JNCG/61 CrossRefMathSciNetMATHGoogle Scholar
  63. 63.
    Paris, R.B., Kaminski, D.: Asymptotics and Mellin–Barnes Integrals. Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)Google Scholar
  64. 64.
    Schrohe, E.: Complex powers of elliptic pseudodifferential operators. Integr. Equ. Oper. Theory 9(3), 337–354 (1986). doi: 10.1007/BF01199350 CrossRefMathSciNetMATHGoogle Scholar
  65. 65.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  66. 66.
    Stein, E., Weiss, G.L.: Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton (1971)MATHGoogle Scholar
  67. 67.
    Sukochev, F., Zanin, D.: ζ-function and heat kernel formulae. J. Funct. Anal. 260 (8), 2451–2482 (2011). doi: 10.1016/j.jfa.2010.10.007 CrossRefMathSciNetMATHGoogle Scholar
  68. 68.
    Teh, K.: Dirac spectra, summation formulae, and the spectral action. Ph.D. thesis, California Institute of Technology. (2013)
  69. 69.
    Trautman, A.: Spin structures on hypersurfaces and the spectrum of the Dirac operator on spheres. In: Spinors, twistors, Clifford algebras and quantum deformations.  10.1007/978-94-011-1719-7_3, pp. 25–29. Springer, Berlin (1993)
  70. 70.
    Vassilevich, D.V.: Heat kernel expansion: user’s manual. Phys. Rep. 388(5), 279–360 (2003). doi: 10.1016/j.physrep.2003.09.002 CrossRefADSMathSciNetMATHGoogle Scholar
  71. 71.
    Vassilevich, D.V.: Noncommutative heat kernel. Lett. Math. Phys. 67(3), 185–194 (2004). doi: 10.1023/B:MATH.0000035037.50663.b1 CrossRefADSMathSciNetMATHGoogle Scholar
  72. 72.
    Vassilevich, D.V.: Heat trace asymptotics on noncommutative spaces. SIGMA 3(093), 0708–4209 (2007). doi: 10.3842/SIGMA.2007.093 MathSciNetGoogle Scholar
  73. 73.
    Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)Google Scholar
  74. 74.
    Zygmund, A.: Trigonometric series, 2nd edn., repr. with corrections and some addictions edn. Cambridge University Press, Cambridge (1968)Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland

Personalised recommendations