Mathematical Physics, Analysis and Geometry

, Volume 16, Issue 2, pp 111–136 | Cite as

Scattering Theory with Finite-Gap Backgrounds: Transformation Operators and Characteristic Properties of Scattering Data

  • Iryna Egorova
  • Johanna Michor
  • Gerald Teschl


We develop direct and inverse scattering theory for Jacobi operators (doubly infinite second order difference operators) with steplike coefficients which are asymptotically close to different finite-gap quasi-periodic coefficients on different sides. We give necessary and sufficient conditions for the scattering data in the case of perturbations with finite second (or higher) moment.


Inverse scattering Jacobi operators Finite-gap Steplike 

Mathematics Subject Classifications (2010)

Primary 47B36 81U40; Secondary 34L25 39A10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aktosun, T., Klaus, M.: Small energy asymptotics for the Schrödinger equation on the line. Inverse Probl. 17, 619–632 (2001)MathSciNetMATHCrossRefADSGoogle Scholar
  2. 2.
    Bazargan, J., Egorova, I.: Jacobi operator with step-like asymptotically periodic coefficients. Mat. Fiz. Anal. Geom. 10, 425–442 (2003).MathSciNetMATHGoogle Scholar
  3. 3.
    Boutet de Monvel, A., Egorova, I.: The Toda lattice with step-like initial data. Soliton asymptotics. Inverse Probl. 16(4), 955–977 (2000)MathSciNetMATHCrossRefADSGoogle Scholar
  4. 4.
    Boutet de Monvel, A., Egorova, I., Khruslov, E.: Soliton asymptotics of the Cauchy problem solution for the Toda lattice. Inverse Probl. 13(2), 223–237 (1997)MathSciNetMATHCrossRefADSGoogle Scholar
  5. 5.
    Boutet de Monvel, A., Egorova, I., Teschl, G.: Inverse scattering theory for one-dimensional Schrödinger operators with steplike finite-gap potentials. J. Anal. Math. 106, 271–316 (2008)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Case, K.M., Kac, M.: A discrete version of the inverse scattering problem. J. Math. Phys. 14, 594–603 (1973)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Case, K.M.: Orthogonal polynomials from the viewpoint of scattering theory. J. Math. Phys. 14, 2166–2175 (1973)Google Scholar
  8. 8.
    Case, K.M., Geronimo, J.: Scattering theory and polynomials orthogonal on the real line. Trans. Am. Math. Soc. 258, 467–494 (1980)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Deift, P., Kamvissis, S., Kriecherbauer, T., Zhou, X.: The Toda rarefaction problem. Commun. Pure Appl. Math. 49(1), 35–83 (1996)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32, 121–251 (1979)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Egorova, I.: The scattering problem for step-like Jacobi operator. Mat. Fiz. Anal. Geom. 9(2), 188–205 (2002)MathSciNetMATHGoogle Scholar
  12. 12.
    Egorova, I., Michor, J., Teschl, G.: Scattering theory for Jacobi operators with quasi-periodic background. Commun. Math. Phys. 264(3), 811–842 (2006)MathSciNetMATHCrossRefADSGoogle Scholar
  13. 13.
    Egorova, I., Michor, J., Teschl, G.: Scattering theory for Jacobi operators with steplike quasi-periodic background. Inverse Probl. 23, 905–918 (2007)MathSciNetMATHCrossRefADSGoogle Scholar
  14. 14.
    Egorova, I., Michor, J., Teschl, G.: Inverse scattering transform for the Toda hierarchy with quasi-periodic background. Proc. Am. Math. Soc. 135, 1817–1827 (2007)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Egorova, I., Michor, J., Teschl, G.: Scattering theory for Jacobi operators with general steplike quasi-periodic background. Zh. Mat. Fiz. Anal. Geom. 4(1), 33–62 (2008)MathSciNetMATHGoogle Scholar
  16. 16.
    Egorova, I., Michor, J., Teschl, G.: Soliton solutions of the Toda hierarchy on quasi-periodic backgrounds revisited. Math. Nachr. 282(4), 526–539 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Faddeev, L.D.: Properties of the S-matrix of the one-dimensional Schrödinger equation. Trudy Mat. Inst. Steklov. 73, 314–336 (Russian) (1964)MathSciNetMATHGoogle Scholar
  18. 18.
    Gusseinov, I.M.: On the continuity of the reflection coefficient for one-dimensional Schrödinger equation. Diff. Equ. 21(11), 1993–1995 (1985)Google Scholar
  19. 19.
    Guseinov, G.S.: The inverse problem of scattering theory for a second-order difference equation on the whole axis. Sov. Math. Dokl. 17, 1684–1688 (1976)MATHGoogle Scholar
  20. 20.
    Kamvissis, S., Teschl, G.: Stability of periodic soliton equations under short range perturbations. Phys. Lett. A 364(6), 480–483 (2007)MathSciNetMATHCrossRefADSGoogle Scholar
  21. 21.
    Kamvissis, S., Teschl, G.: Long-time asymptotics of the periodic Toda lattice under short-range perturbations. J. Math. Phys. 53, 073706 (2012)MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Kay, J., Moses, H.: The determination of the scattering potential from the spectral measure function I–III. Nuovo Cim. 2(5), 917–961 (1955); 3(2), 56–84 (1956); 3(3), 276–304 (1956)Google Scholar
  23. 23.
    Khanmamedov, A.K.: Transformation operators for the perturbed Hill difference equation and one of their applications. Sib. Mat. Z. 44(4), 926–937 (Russian) (2003)MathSciNetMATHGoogle Scholar
  24. 24.
    Khanmamedov, A.K.: Direct and inverse scattering problems for the perturbed Hill difference equation. Sb. Math. 196(9–10), 1529–1552 (2005)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Khanmamedov, A.K.: On the continuity of the reflection coefficient for difference Schrödinger operator with divergent potential. Baku University Bulletin. Math. Phys. 2, 54–58 (Russian) (2005)Google Scholar
  26. 26.
    Klaus, M.: Low-energy behaviour of the scattering matrix for the Schrödinger equation on the line. Inverse Probl. 4, 505–512 (1988)MathSciNetMATHCrossRefADSGoogle Scholar
  27. 27.
    Krüger, H., Teschl, G.: Long-time asymptotics of the Toda lattice for decaying initial data revisited. Rev. Math. Phys. 21, 61–109 (2009)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Krüger, H., Teschl, G.: Stability of the periodic Toda lattice in the soliton region. Int. Math. Res. Not. 2009(No. 21), 3996–4031 (2009)MATHGoogle Scholar
  29. 29.
    Marchenko, V.A.: On reconstruction of the potential energy from phases of the scattered waves. Dokl. Akad. Nauk SSSR 104, 695–698 (Russian) (1955)MathSciNetMATHGoogle Scholar
  30. 30.
    Marchenko, V.A.: Sturm–Liouville Operators and Applications. Birkhäuser, Basel (1986)MATHGoogle Scholar
  31. 31.
    Michor, J., Teschl, G.: Trace formulas for Jacobi operators in connection with scattering theory for quasi-periodic background. In: Janas, J., et al. (eds.) Operator Theory, Analysis, and Mathematical Physics, pp. 69–76. Oper. Theory Adv. Appl., vol. 174. Birkhäuser, Basel (2007)CrossRefGoogle Scholar
  32. 32.
    Teschl, G.: Oscillation theory and renormalized oscillation theory for Jacobi operators. J. Differ. Equ. 129, 532–558 (1996)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Teschl, G. On the initial value problem for the Toda and Kac-van Moerbeke hierarchies. In: Weikard, R., Weinstein, G. (eds.) Differential Equations and Mathematical Physics, pp. 375–384. AMS/IP Studies in Advanced Mathematics, vol. 16. Amer. Math. Soc., Providence (2000)Google Scholar
  34. 34.
    Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. In: Math. Surv. and Mon., vol. 72. Amer. Math. Soc., Rhode Island (2000)Google Scholar
  35. 35.
    Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations, vol. 2. Clarendon Press, Oxford (1958)Google Scholar
  36. 36.
    Venakides, S., Deift, P., Oba, R.: The Toda shock problem. Commun. Pure Appl. Math. 44(8–9), 1171–1242 (1991)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Volberg, A., Yuditskii, P.: On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length. Commun. Math. Phys. 226, 567–605 (2002)MathSciNetMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Iryna Egorova
    • 1
  • Johanna Michor
    • 2
    • 3
  • Gerald Teschl
    • 2
    • 3
  1. 1.Institute for Low Temperature PhysicsKharkivUkraine
  2. 2.Faculty of MathematicsUniversity of ViennaWienAustria
  3. 3.International Erwin Schrödinger Institute for Mathematical PhysicsWienAustria

Personalised recommendations