Advertisement

On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation

  • Rubens Figueiredo Camargo
  • Edmundo Capelas de Oliveira
  • Jayme VazJr.
Article

Abstract

The classical Mittag-Leffler functions, involving one- and two-parameter, play an important role in the study of fractional-order differential (and integral) equations. The so-called generalized Mittag-Leffler function, a function with three-parameter which generalizes the classical ones, appear in the fractional telegraph equation. Here we introduce some integral transforms associated with this generalized Mittag-Leffler function. As particular cases some recent results are recovered.

Keywords

Fractional calculus Mittag-Leffler functions Integral transforms H-Fox function 

Mathematics Subject Classifications (2010)

33E12 35R11 26A33 34A08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langlands, T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Langlands, T.A.M.: Solution of a modified fractional diffusion equation. Physica A 367, 136–144 (2006)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Zhang, H., Liu, F.: The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions. Numer. Math. J. Chinese Univ. (English Ser.) 16, 181–192 (2007)MATHGoogle Scholar
  4. 4.
    Duan, J.-s., Xu, M.-y.: The problem for fractional diffusion-wave equations on finite interval and laplace transform (in Chinese). Appl. Math. J. Chin. Univ. Ser. A 19, 165–171 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Yu, R., Zhang, H.: New function of Mittag-Leffler type and its application in the fractional diffusion-wave equation. Chaos, Solitons Fractals 30, 946–955 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Frac. Calc. Appl. Anal. 4, 153–192 (2001)MathSciNetMATHGoogle Scholar
  7. 7.
    Mainardi, F., Pagnini, G., Saxena, R.K.: Fox H-function in fractional diffusion. J. Comput. Appl. Math. 178, 321–331 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    Mathai, A.M., Saxena, R.K., Haubold, H.J.: A certain class of Laplace transforms with applications to reaction and reaction–diffusion equations. Astrophys. Space Sci. 305, 283–288 (2006)ADSMATHCrossRefGoogle Scholar
  9. 9.
    Mittag-Leffler, G.M.: Sur la Nouvelle Fonction E α. C. R. Acad. Sci. Paris 137, 554–558 (1903)Google Scholar
  10. 10.
    Humbert, P., Agarwal, R.P.: Sur la Fonction de Mittag-Leffler e Quelques-unes de Ses Généralisations. Bull. Sci. Math. 77, 180–185 (1953)MathSciNetMATHGoogle Scholar
  11. 11.
    Prabhakar, T.R.: a singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)MathSciNetMATHGoogle Scholar
  12. 12.
    Figueiredo Camargo, R., Chiacchio, A.O., Capelas de Oliveira, E.: Differentiation to fractional orders and the fractional telegraph equation. J. Math. Phys. 49, 033505 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Function of One and Two Variables with Applications. South Asian Publishers, New Delhi (1982)Google Scholar
  14. 14.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATHGoogle Scholar
  15. 15.
    Metzler, R., Klafter, J.: The random walk’s guides to anomalous diffusion: a fractional kinetic equation. Phys. Rep. 339, 1–77 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    Soubhia, A.L., Figueiredo Camargo, R., Vaz Jr., J., Capelas de Oliveira, E.: Theorems for series in three-parameter Mittag-Leffler functions. Frac. Cal. Appl. Anal. 13, 9–20 (2010)MATHGoogle Scholar
  17. 17.
    Saxena, R.K., Pagnini, G.: Exact solutions of triple-order time-fractional differential equations for anomalous relaxation and diffusion I: the accelerating case. Physica A 390, 602–613 (2011)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Capelas de Oliveira, E., Mainardi, F., Vaz Jr., J.: Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J. Special Topics 193, 161–171 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Mainardi, F., Gorenflo, R., Vivoli, A.: Renewal processes of Mittag-Leffler and Wright type. Frac. Calc. Appl. Anal. 8, 7–38 (2005)MathSciNetMATHGoogle Scholar
  20. 20.
    Romão Martins, E., Capelas de Oliveira, E.: Differential Equations and the Stäckel Systems (in Portuguese), vol. 4. IMECC-UNICAMP, Campinas (2006)Google Scholar
  21. 21.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)MATHGoogle Scholar
  22. 22.
    Capelas de Oliveira, E., Rodrigues Jr., W.A.: Analytic Functions with Applications (in Portuguese). Livraria da Física, São Paulo (2005)Google Scholar
  23. 23.
    Chen, W., Holm, S.: Physical interpretation of fractional diffusion-wave equation via lossy media obeying frequency power law. arXiv.org/abs/math-ph/0303040 (2003)
  24. 24.
    Inizan, P.: Homogeneous fractional embeddings. J. Math. Phys. 49, 082901 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Figueiredo Camargo, R., Charnet, R., Capelas de Oliveira, E.: On some fractional Green’s functions. J. Math. Phys. 50, 043514 (2009)CrossRefGoogle Scholar
  26. 26.
    Capelas de Oliveira, E.: Fractional Green function and diffusion-wave equation (2011, submitted)Google Scholar
  27. 27.
    Mathai, A.M., Saxena, R.K.: The H-Function with Applications in Statistics and Other Disciplines. Wiley Eastern Ltd., New Delhi (1978)Google Scholar
  28. 28.
    Mathai, A.M., Haulbold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)MATHCrossRefGoogle Scholar
  29. 29.
    Mathai, A.M., Saxena, R.K., Haulbold, H.J.: The H-Function Theory and Applications. Springer, New York (2010)Google Scholar
  30. 30.
    Kilbas, A.A., Saigo, M.: H-Transforms. Theory and Applications. Chapman and Hall/CRC, Boca Raton (2004)MATHCrossRefGoogle Scholar
  31. 31.
    Silva Costa, F.: Fox’s H-function and applications (in Portuguese). Doctoral thesis, Unicamp (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rubens Figueiredo Camargo
    • 1
  • Edmundo Capelas de Oliveira
    • 2
  • Jayme VazJr.
    • 2
  1. 1.Departamento de MatemáticaFaculdade de Ciências – UNESPBauruBrazil
  2. 2.Departamento de Matemática AplicadaIMECC – UnicampCampinasBrazil

Personalised recommendations