Multi-particle Anderson Localisation: Induction on the Number of Particles



This paper is a follow-up of our recent papers Chulaevsky and Suhov (Commun Math Phys 283:479–489, 2008) and Chulaevsky and Suhov (Commun Math Phys in press, 2009) covering the two-particle Anderson model. Here we establish the phenomenon of Anderson localisation for a quantum N-particle system on a lattice \(\mathbb Z^d\) with short-range interaction and in presence of an IID external potential with sufficiently regular marginal cumulative distribution function (CDF). Our main method is an adaptation of the multi-scale analysis (MSA; cf. Fröhlich and Spencer, Commun Math Phys 88:151–184, 1983; Fröhlich et al., Commun Math Phys 101:21–46, 1985; von Dreifus and Klein, Commun Math Phys 124:285–299, 1989) to multi-particle systems, in combination with an induction on the number of particles, as was proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently, Aizenman and Warzel (2008) proved spectral and dynamical localisation for N-particle lattice systems with a short-range interaction, using an extension of the Fractional-Moment Method (FMM) developed earlier for single-particle models in Aizenman and Molchanov (Commun Math Phys 157:245–278, 1993) and Aizenman et al. (Commun Math Phys 224:219–253, 2001) (see also references therein) which is also combined with an induction on the number of particles.


Anderson localisation Multi-particle systems 

Mathematics Subject Classifications (2000)

Primary 47B80 47A75 Secondary 35P10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, M., Molchanov, S.: Localization at a large disorder and at extreme energies: an elementary derivation. Comm. Math. Phys. 157, 245–278 (1993)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Aizenman, M., Schenker, J.H., Friedrich, R.M., Hundertmark, D.: Finite-volume fractional-moment criteria for Anderson localization. Comm. Math. Phys. 224, 219–253 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Aizenman, M., Warzel, S.: Localization bounds for multiparticle systems. arXiv:0809:3436 (2008)
  4. 4.
    Chulaevsky, V.: A Wegner-type estimate for correlated potentials. Math. Phys. Anal. Geom. 11, 117–129 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chulaevsky, V., Suhov, Y.: Wegner-Stollmann bounds and localization in correlated potentials. Université de Reims. (2007)
  6. 6.
    Chulaevsky, V., Suhov, Y.: Wegner bounds for a two-particle tight binding model. Commun. Math. Phys. 283, 479–489 (2008)MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Chulaevsky, V., Suhov, Y.: Eigenfunctions in a two-particle Anderson tight binding model. Comm. Math. Phys. (2009, in press). doi: 10.1007/s00220-008-0721-0
  8. 8.
    von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Comm. Math. Phys. 124, 285–299 (1989)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Fröhlich, J., Spencer, T.: Absence of diffusion inthe Anderson tight binding model for large disorder or low energy. Comm. Math. Phys. 88, 151–184 (1983)MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: A constructive proof of localization in Anderson tight binding model. Comm. Math. Phys. 101, 21–46 (1985)MATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Kirsch, W.: A Wegner estimate for multi-particle random Hamiltonians. arXiv:0704:2664 (2007)
  12. 12.
    Stollmann, P.: Wegner estimates and localization for continuous Anderson models with some singular distributions. Arch. Math. 75, 307–311 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Stollmann, P.: Caught by Disorder. Birkhäuser, Boston (2001)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Département de Mathématiques et d’InformatiqueUniversité de ReimsReims Cedex 2France
  2. 2.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK

Personalised recommendations