Mathematical Physics, Analysis and Geometry

, Volume 10, Issue 3, pp 205–225 | Cite as

Cuspons and Smooth Solitons of the Degasperis–Procesi Equation Under Inhomogeneous Boundary Condition



This paper is contributed to explore all possible single peakon solutions for the Degasperis–Procesi (DP) equation m t  + m x u + 3mu x  = 0, m = u − u xx . Our procedure shows that the DP equation either has cusp soliton and smooth soliton solutions only under the inhomogeneous boundary condition lim|x|→ ∞  u =A ≠0, or possesses the regular peakon solutions ce  − |x − ct| ∈ H 1 (c is the wave speed) only when lim|x|→ ∞  u = 0 (see Theorem 4.1). In particular, we first time obtain the stationary cuspon solution \(u = {\sqrt {1 - e^{{ - 2{\left| x \right|}}} } } \in W^{{1,1}}_{{loc}} \) of the DP equation. Moreover we present new cusp solitons (in the space of \(W^{{1,1}}_{{loc}} \)) and smooth soliton solutions in an explicit form. Asymptotic analysis and numerical simulations are provided for smooth solitons and cusp solitons of the DP equation.


Soliton Integrable system Analysis Traveling wave 

Mathematics Subject Classifications (2000)

35D05 35G30 35Q53 37K10 37K40 76B15 76B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Rational Mech. Anal. 183, 215–239 (2007)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa-Holm equation. Inverse Problems 22, 2197–2207 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Constantin, A., Strauss, W.: Stability of the Camassa–Holm solitons. J. Nonlinear Sci. 12, 415–522 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Degasperis, A., Procesi, M.: Asymptotic integrability. In: Degasperis, A., Gaeta, G. (eds.) Symmetry and Perturbation Theory, World Scientific, pp. 23–37 (1999)Google Scholar
  7. 7.
    Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integrable equation with peakon solutions. Theoret. and Math. Phys. 133, 1463–1474 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Holm, D.D., Staley, M.F.: Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE. Phys. Lett. A 308, 437–444 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  9. 9.
    Escher, J., Liu, Y., Yin, Z.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mikhailov, A.V., Novikov, V.S.: Perturbative symmetry approach. J. Phys. A, Math. Gen. 35, 4775–4790 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Boutet de Monvel, A., Shepelsky, D.: Riemann–Hilbert approach for the Camassa-Holm equation on the line. C. R. Math. Acad. Sci. Paris 343, 627–632 (2006)MATHMathSciNetGoogle Scholar
  13. 13.
    Qiao, Z.J.: Integrable hierarchy, 3×3 constrained systems, and parametric and stationary solutions. Acta Appl. Math. 83, 199–220 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Qiao, Z.J.: The Camassa–Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold. Comm. Math. Phys. 239, 309–341 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Qiao, Z.J.: Generalized r-matrix structure and algebro-geometric solutions for integrable systems. Rev. Math. Phys. 13, 545–586 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701–9 (2006)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Qiao, Z.J., Li, S.: A new integrable hierarchy, parametric solution, and traveling wave solution. Math. Phys. Anal. Geom. 7, 289–308 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Qiao, Z.J., Zhang, G.: On peaked and smooth solitons for the Camassa–Holm equation. Europhys. Lett. 73, 657–663 (2006)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Vakhnenko, V., Parkes, E.: Periodic and solitary-wave solutions of the Degasperis–Procesi equation. Chaos Solitons Fractals 20, 1059–1073 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of MathematicsThe University of Texas – Pan AmericanEdinburgUSA
  2. 2.Department of MathematicsMorgan State UniversityBaltimoreUSA

Personalised recommendations