Mathematical Physics, Analysis and Geometry

, Volume 10, Issue 1, pp 81–95 | Cite as

On the Spectral Behaviour of a Non-self-adjoint Operator with Complex Potential

  • Carmen Martínez Adame


We consider the non-self-adjoint Anderson operator with a complex potential as a pseudo-ergodic operator in one spatial dimension and use second order numerical ranges to obtain tight bounds on the spectrum of the operator. We also find estimates for the size of possible holes contained in the spectrum of such an operator.


Complex potential Non-self-adjoint Anderson model Numerical range Spectrum 

Mathematics Subject Classifications (2000)

47B80 47A12 60H25 65F15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, E.B.: Spectral properties of random non-self-adjoint matrices and operators. Proc. Roy. Soc. London Ser. A 457, 191–206 (2001)MATHADSCrossRefGoogle Scholar
  2. 2.
    Davies, E.B.: Spectral theory of pseudo-ergodic operators. Comm. Math. Phys. 216, 687–704 (2001)MATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Davies, E.B.: Spectral bounds using higher order numerical ranges. LMS J. Comput. Math. 8, 17–45 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Davies, E.B., Simon, B.: L 1 properties of intrinsic schrödinger operators. J. Funct. Anal. 65, 126–146 (1986)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goldsheid, I.Y., Khoruzhenko, B.A.: Distribution of eigenvalues in non-hermitian Anderson model. Phys. Rev. Lett. 80, 2897–2901 (1998)CrossRefADSGoogle Scholar
  6. 6.
    Goldsheid, I.Y., Khoruzhenko, B.A.: Eigenvalue curves of asymmetric tridiagonal random matrices. Electron. J. Probab. 5(16), 1–28 (2000)MathSciNetGoogle Scholar
  7. 7.
    Goldsheid, I.Y., Khoruzhenko, B.A.: Regular spacings of complex eigenvalues in the one-dimensional non-hermitian Anderson model. Comm. Math. Phys. 238, 505–524 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Gustafson, K.E. Rao, D.K.M.: Numerical Range. The field of values of linear operators and matrices. Springer, New York (1997)Google Scholar
  9. 9.
    Hatano, N., Nelson, D.R.: Localization transitions in non-hermitian quantum mechanics. Phys. Rev. Lett. 77, 570–573 (1996)CrossRefADSGoogle Scholar
  10. 10.
    Hatano, N., Nelson, D.R.: Vortex pinning and non-hermitian quantum mechanics. Phys. Rev. B 56, 8651–8673 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Hatano, N., Nelson, D.R.: Non-hermitian localization and Eigenfunctions. Phys. Rev. B 58, 8384–8390 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Martínez, C.: Spectral Properties of Tridiagonal Operators, PhD Dissertation, King’s College London, London (2005)Google Scholar
  13. 13.
    Martínez, C.: Spectral estimates for the one-dimensional non-self-adjoint Anderson model. J. Operator Theory 56(1), 59–88 (2006)MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Departamento de Matemáticas, Facultad de CienciasUNAMMéxico D.F.Mexico

Personalised recommendations