Advertisement

Mathematical Physics, Analysis and Geometry

, Volume 9, Issue 3, pp 203–223 | Cite as

A Geometrical Interpretation of ‘Supergauge’ Transformations Using D-Differentiation

  • D. J. Hurley
  • M. A. Vandyck
Article

Abstract

D-transport is employed to construct, within the limited setting of a non-graded manifold, a geometrical framework that yields a generalisation of the ‘supergauge’ transformations of Supergravity. Killing’s equation is shown to be at the origin of the ‘gauged’ supersymmetry transformations. The presence of a field-dependent Lorentz transformation is traced to the fact that, for every given X, the difference of two D-differentiation operators \({^1\!D}_X\) and \({^2\!D}_X\) is a linear transformation that necessarily depends on X.

Key words

supergravity gauge transformation D-differentiation 

Mathematics Subject Classifications (2000)

83E50 58C20 58Z05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartocci, C., Bruzzo, U. and Hernández-Ruipérez, D.: The Geometry of Supermanifolds, Kluwer, Dordrecht, The Netherlands, 1991.MATHGoogle Scholar
  2. 2.
    Castellani, L., D’Auria, R. and Fré, P.: Supergravity and Superstrings, World Scientific, Singapore, 1991.Google Scholar
  3. 3.
    DeWitt, B.: Supermanifolds, Cambridge University Press, Cambridge, UK, 1992.MATHGoogle Scholar
  4. 4.
    Grimm, R., Wess, J. and Zumino, B.: A complete solution of the Bianchi identities in superspace with supergravity constraints, Nuclear Phys., B 152 (1979), 255–265.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Hurley, D. and Vandyck, M.: A unified framework for Lie and covariant differentiation (with application to tensor fields), J. Math. Phys. 42 (2001), 1869–1886.MATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Hurley, D. and Vandyck, M.: An application of D-differentiation to solid-state physics, J. Phys. A 33 (2000), 6981–6991.MATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Hurley, D. and Vandyck, M.: Topics in Differential Geometry; A New Approach Using D -Differentiation, Springer-Praxis, London, UK, 2002.Google Scholar
  8. 8.
    Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Interscience, New York, NY, 1963.MATHGoogle Scholar
  9. 9.
    Nakahara, M.: Geometry, Topology and Physics, Adam Hilger, Bristol, UK, 1990.MATHCrossRefGoogle Scholar
  10. 10.
    Nath, P. and Arnowith, R.: Generalized supergauge symmetry as a new framework for unified gauge theories, Phys. Lett. B 56 (1975), 177–180.CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    Nath, P. and Arnowith, R.: Supergravity and gauge symmetry, Phys. Lett. B 65 (1976), 73–77.CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Nath, P. and Arnowith, R.: Supergravity geometry in superspace, Nuclear Phys., B 165 (1980), 462–482.CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Synge, J. L. and Schild, A.: Tensor Calculus, Dover, New York, NY, 1942.Google Scholar
  14. 14.
    van Nieuwenhuizen, P.: Supergravity, Phys. Rep. 68 (1981), 189–398.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Weinberg, S.: The Quantum Theory of Fields, Vol. 3, Cambridge University Press, Cambridge, UK, 2000.MATHGoogle Scholar
  16. 16.
    Wess, J. and Zumino, B.: Superspace formulation of supergravity, Phys. Lett. B 66 (1977), 361–364.CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Wess, J. and Zumino, B.: Superfield Lagrangian for supergravity, Phys. Lett. B 74 (1978), 51–53.CrossRefADSGoogle Scholar
  18. 18.
    Wess, J. and Zumino, B.: The component formalism follows from the superspace formulation of supergravity, Phys. Lett. B 79 (1978), 394–398.CrossRefADSGoogle Scholar
  19. 19.
    Wess, J. and Bagger, J.: Supersymmetry and Supergravity, Princeton University Press, Princeton, NJ, 1992.Google Scholar
  20. 20.
    West, P.: Introduction to Supersymmetry and Supergravity, World Scientific, Singapore, 1990.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of MathematicsNational University of IrelandCorkIreland
  2. 2.Department of PhysicsNational University of IrelandCorkIreland

Personalised recommendations