Advertisement

Earth, Moon, and Planets

, Volume 118, Issue 2–3, pp 91–101 | Cite as

Treatment of Viscosity in the Shock Waves Observed After Two Consecutive Coronal Mass Ejection Activities CME08/03/2012 and CME15/03/2012

  • Huseyin Cavus
Article

Abstract

A coronal mass ejection (CME) is one of the most the powerful activities of the Sun. There is a possibility to produce shocks in the interplanetary medium after CMEs. Shock waves can be observed when the solar wind changes its velocity from being supersonic nature to being subsonic nature. The investigations of such activities have a central place in space weather purposes, since; the interaction of shocks with viscosity is one of the most important problems in the supersonic and compressible gas flow regime (Blazek in Computational fluid dynamics: principles and applications. Elsevier, Amsterdam 2001). The main aim of present work is to achieve a search for the viscosity effects in the shocks occurred after two consecutive coronal mass ejection activities in 2012 (i.e. CME08/03/2012 and CME15/03/2012).

Keywords

Shock waves Viscosity Reynolds number Coronal mass ejection 

References

  1. S.K. Antiochos, C.R. De Vore, J.A. Klimchuk, Astrophys. J. 510, 485 (1999)ADSCrossRefGoogle Scholar
  2. J. Blazek, Computational Fluid Dynamics: Principles and Applications (Elsevier, Amsterdam, 2001)MATHGoogle Scholar
  3. J.E. Borovsky, H.O. Funsten, J. Geophys. Res. 108, 13 (2003)Google Scholar
  4. F.C. Bruhn, K. Pauly, V. Kaznov, in Proceedings of The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), Munich-Germany, 2005Google Scholar
  5. H. Cavus, Advances in astronomy, vol. 2013. 2013. doi:  10.1155/2013/58296
  6. H. Cavus, Astrophys. Bull. 70, 117 (2015)ADSCrossRefGoogle Scholar
  7. H. Cavus, D. Kazkapan, New Astron. 2013(25), 89 (2013)ADSCrossRefGoogle Scholar
  8. H. Cavus, A. Kurt, Astrophys. Bull. 70, 220–225 (2015)ADSCrossRefGoogle Scholar
  9. A.R. Choudhuri, The Physics of Fluids and Plasmas (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  10. M.V. Eselevich, V.G. Eselevich, Astron. Rep. 55, 359 (2011)ADSCrossRefGoogle Scholar
  11. G.A. Gary, Sol. Phys. 203, 71 (2001)ADSCrossRefGoogle Scholar
  12. J.A. Gonzales-Esparza, P. Corona-Romero, E. Aguilar-Rodriguez, in Proceedings of XXIX International Conference on Phenomena in Ionized Gases, Cancun-Mexico, 2009Google Scholar
  13. H. Hamad, Z. Angew. Math. Phys. 49, 827 (1998)MathSciNetCrossRefGoogle Scholar
  14. T.E. Holzer, W.I. Axford, Annu. Rev. Astron. Astrophys. 8, 31 (1970)ADSCrossRefGoogle Scholar
  15. E.K.J. Kilpua, A. Isavnin, A. Vourlidas, H.E.J. Koskinen, L. Rodriguez, Ann. Geophys. 31, 1251 (2013)ADSCrossRefGoogle Scholar
  16. D.D. Knight, in The Handbook of Fluid Dynamics, ed. by R.W. Johnson (CRC Pres, Boca Raton, FL, 1998), p. 8Google Scholar
  17. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959). p310 MATHGoogle Scholar
  18. Y.D. Liu, J.D. Richardson, C. Wang, J.G. Luhmann, Astrophys. J. Lett. 788, L28–L33 (2014)ADSCrossRefGoogle Scholar
  19. W.H. Matthaeus, S. Ghosh, S. Oughton, D.A. Roberts, J. Geophys. Res. 101, 7619 (1996)ADSCrossRefGoogle Scholar
  20. M. Morduchow, P.A. Libby, J. Aeron. Sci. 16, 674 (1949)MathSciNetCrossRefGoogle Scholar
  21. V.M. Nakariakov, L. Ofman, T.D. Arber, Astron. Astrophys. 353, 741 (2000)ADSGoogle Scholar
  22. E.N. Parker, Astrophys. J. 134, 20 (1961)ADSCrossRefGoogle Scholar
  23. E.N. Parker, Astrophys. J. 372, 719 (1991)ADSCrossRefGoogle Scholar
  24. E.R. Priest, Solar Magnetohydrodynamics (D. Reidel Publishing Company, Dordrecht, 2000)Google Scholar
  25. O. Reynolds, Philos. Trans. R. Soc. 174, 935 (1883)CrossRefGoogle Scholar
  26. P. Riley, J.A. Linker, Z. Mikic, D. Odstrcil, Adv. Space Res. 38, 535 (2006)ADSCrossRefGoogle Scholar
  27. T.V. Stepanova, A.G. Kosovichev, Adv. Space Res. 9, 1855 (2000)ADSCrossRefGoogle Scholar
  28. M. Stix, The Sun (Springer Verlag, Berlin, 1991)MATHGoogle Scholar
  29. P.A. Sturrock, J.R. Spreiter, J. Geophys. Res. 70, 5345 (1965)ADSCrossRefGoogle Scholar
  30. T. Suzuki, Mon. Not. R. Astron. Soc. Lett. 349, 1227 (2004)ADSCrossRefGoogle Scholar
  31. D. Tsiklauri, V.M. Nakariakov, T.D. Arber, Astron. Astrophys. 395, 285 (2002)ADSCrossRefGoogle Scholar
  32. J. Vandegriff, K. Wagstaff, G. Ho, J. Plauger, Adv. Space Res. 36, 2323 (2003)ADSCrossRefGoogle Scholar
  33. I. Veselovsky, Astrophys. Space Sci. 277, 219 (2001)ADSCrossRefGoogle Scholar
  34. Z.U.A. Warsi, Fluid Dynamics: Theoretical and Computational Approaches (CRC Press, Boca Raton, FL, 1999)MATHGoogle Scholar
  35. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications Inc., New York, 2002)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Physics Department, Arts and Science FacultyCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations